相關(guān)習(xí)題
 0  203882  203890  203896  203900  203906  203908  203912  203918  203920  203926  203932  203936  203938  203942  203948  203950  203956  203960  203962  203966  203968  203972  203974  203976  203977  203978  203980  203981  203982  203984  203986  203990  203992  203996  203998  204002  204008  204010  204016  204020  204022  204026  204032  204038  204040  204046  204050  204052  204058  204062  204068  204076  266669 

科目: 來源: 題型:

函數(shù)y=-
3
x
的反函數(shù)是
 

查看答案和解析>>

科目: 來源: 題型:

2014年8月 3日,云南魯?shù)榘l(fā)生6.5級地震,各地救援力量紛紛趕來,為提高主要交通要道的車輛通行能力進(jìn)一步改善整個地震災(zāi)區(qū)的交通狀況,經(jīng)檢測,當(dāng)車流密度達(dá)到200輛/千米時,造成堵塞,此時車流速度為0,當(dāng)車密度不超過20輛/千米時,車流速度為60千米/時,研究表明,當(dāng)20≤x≤200時,車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的一次函數(shù).
(1)當(dāng)0≤x≤200時,求函數(shù)v(x)的表達(dá)式
(2)當(dāng)車流速度x為多大時,車流量(單位時間內(nèi)通過主要交通要道某觀測點(diǎn)的車輛數(shù),單位:輛/小時)f(x)=x.v(x)可以達(dá)到最大,并求出最大值.(精確到1輛/小時)

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=-2x+4,令Sn=f(
1
n
)+f(
2
n
)+f(
3
n
)+…+f(
n-1
n
)+f(1).
(1)求Sn;
(2)設(shè)bn=
an
Sn
(a∈R)且bn<bn+1對所有正整數(shù)n恒成立,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知{an}是首項為1的遞增等差數(shù)列且a22=S3
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{bn}滿足bn=
2
anan+1
,Tn為數(shù)列{bn}的前n項和,若對任意的n∈N*,不等式λTn<n+8×(-1)n恒成立,求λ的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

在運(yùn)用計算機(jī)(器)作函數(shù)圖象時,經(jīng)常用到“符號函數(shù)”S(x)=
1,x≥0
0,x<0.
例如要表示分段函數(shù)g(x)=
x,x>2
-x,x<2
,可以將g(x)表示為g(x)=x•S(x-2)+(-x)•S(2-x)輸入計算機(jī),則計算機(jī)就會畫出函數(shù)g(x)的圖象.設(shè)f(x)=(-x2+4x-3)•S(x-1)+(x2-1)•S(1-x)(x≠1).
(1)請把函數(shù)y=f(x)寫成分段函數(shù)的形式;
(2)畫出函數(shù)y=f(x)的大致圖象;
(3)設(shè)F(x)=f(x+k),是否存在實數(shù)k,使得F(x)為奇函數(shù)?若存在,寫出滿足條件的k值;若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

求函數(shù)f(x)=2cos2x+5sinx-4(
π
6
≤x≤
π
3
)的最大值和最小值,并寫出取最值時x的集合.

查看答案和解析>>

科目: 來源: 題型:

已知直線l1:(m+1)x-(m-a)y+2=0,直線l2:3x+my-1=0,且l1⊥l2,求實數(shù)m的值.

查看答案和解析>>

科目: 來源: 題型:

已知向量
a
=(-1,
3
),
b
=(
3
2
,
1
2
),
c
=
a
+(m+1)
b
d
=-
1
m
a
+
1
n
b
(mn≠0)
(1)若m=-
1
2
,n=-
1
16
,求向量
c
d
的夾角;
(2)若n=
1
3
,且|
a
+
c
|=|
b
+
d
|,求m的值.

查看答案和解析>>

科目: 來源: 題型:

已知⊙O:x2+y2=9,點(diǎn)A(2,2),過A作兩條互相垂直的弦CD和EF.
(1)求證:CD2+EF2為定值;
(2)求四邊形CDEF的面積的最大值;
(3)求弦CD與EF的長之和的最大值;
(4)求△OEF的面積的最大值;
(5)點(diǎn)B(1,1),過B點(diǎn)作一條直線l交⊙O于K、H,求△OKH面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

對任意x,y滿足f(x+y2)=f(x)+2[f(y)]2,且f(1)≠0,則f(2013)=( 。
A、
2012
2
B、
2013
2
C、
2014
2
D、
2014
2

查看答案和解析>>

同步練習(xí)冊答案