相關(guān)習(xí)題
 0  205222  205230  205236  205240  205246  205248  205252  205258  205260  205266  205272  205276  205278  205282  205288  205290  205296  205300  205302  205306  205308  205312  205314  205316  205317  205318  205320  205321  205322  205324  205326  205330  205332  205336  205338  205342  205348  205350  205356  205360  205362  205366  205372  205378  205380  205386  205390  205392  205398  205402  205408  205416  266669 

科目: 來(lái)源: 題型:

若tan(2π-α)=-3,則sin2α+2sinαcosα=
 

查看答案和解析>>

科目: 來(lái)源: 題型:

函數(shù)f(x)=xcos2x在區(qū)間[0,3π]上的零點(diǎn)個(gè)數(shù)為(  )
A、5B、6C、7D、8

查看答案和解析>>

科目: 來(lái)源: 題型:

在數(shù)列{an}中,a1=4,an+1=an+k•3n+1(n∈N+,k為常數(shù)),a1,a2+6,a3成等差數(shù)列.
(1)設(shè)數(shù)列{bn}滿足bn=
n
an-n
,求數(shù)列{bn}的前n項(xiàng)和Sn
(2)設(shè)數(shù)列{cn}滿足cn=
n2
an-n
,證明:cn
4
9

查看答案和解析>>

科目: 來(lái)源: 題型:

已知等差數(shù)列{an}的各項(xiàng)均為正數(shù),且d≠0,a1=1,從該數(shù)列中依次抽出無(wú)窮項(xiàng)構(gòu)成對(duì)等比數(shù)列{bn},已知b1=a1,b2=a3,b4=a27
(1)求an,bn;
(2)設(shè)cn=
(6an-3)bn
an+1an
,數(shù)列{cn}的前n項(xiàng)和Sn,求Sn>2014的最小自然數(shù)n.

查看答案和解析>>

科目: 來(lái)源: 題型:

函數(shù)f(x)=2sin(
8
x)-log2x的零點(diǎn)個(gè)數(shù)為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目: 來(lái)源: 題型:

對(duì)于函數(shù)f(x)=x3+3x+a,在曲線y=
2x
x2+1
上存在點(diǎn)(s,t),使得f(f(t))=t,則a的取值范圍是( 。
A、(-3,0)
B、[-3,0]
C、(-3,3)
D、[-3,3]

查看答案和解析>>

科目: 來(lái)源: 題型:

壇子中有6個(gè)鬮,其中3個(gè)標(biāo)記為“中獎(jiǎng)”,另外三個(gè)標(biāo)記是“謝謝參與”,甲、乙、丙三人份兩輪按甲、乙、丙、甲、乙、丙的順序依次抽取,當(dāng)有人摸到“中獎(jiǎng)”鬮時(shí),摸獎(jiǎng)隨即結(jié)束.
(1)若按有放回抽取,甲、乙、丙的中獎(jiǎng)概率分別是多少?
(2)若按不放回抽取,甲、乙、丙的中獎(jiǎng)概率分別是多少?
(3)按不放回抽取,第一輪摸獎(jiǎng)時(shí)有人中獎(jiǎng)則可獲得獎(jiǎng)金10000元,第二輪摸獎(jiǎng)時(shí)才中獎(jiǎng)可獲得獎(jiǎng)金6000元,求甲、乙、丙三人所獲獎(jiǎng)金總額ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=|x-a|-
4
x
+a,a∈R.
(1)若a=1,試判斷并用定義證明函數(shù)f(x)在[1,4]上的單調(diào)性;
(2)當(dāng)x∈[1,4]時(shí),求函數(shù)f(x)的最大值的表達(dá)式M(a);
(3)是否存在實(shí)數(shù)a,使得f(x)=3有3個(gè)不等實(shí)根x1<x2<x3,且它們依次成等差數(shù)列,若存在,求出所有a的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知f(x)=3x-3|x|,若3tf(2t)-mf(t)≥0對(duì)于t∈[-2,-1]恒成立,則m∈
 

查看答案和解析>>

科目: 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)=-
1
2
+
1
2x+a
是奇函數(shù).
(1)求a的值;
(2)判斷并用定義證明函數(shù)f(x)的單調(diào)性;
(3)若不等式f(k3x)+f(3x-9x-2)>0對(duì)任意x∈R恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案