相關(guān)習(xí)題
 0  208566  208574  208580  208584  208590  208592  208596  208602  208604  208610  208616  208620  208622  208626  208632  208634  208640  208644  208646  208650  208652  208656  208658  208660  208661  208662  208664  208665  208666  208668  208670  208674  208676  208680  208682  208686  208692  208694  208700  208704  208706  208710  208716  208722  208724  208730  208734  208736  208742  208746  208752  208760  266669 

科目: 來(lái)源: 題型:

在△ABC中,a、b、c分別是角A、B、C的對(duì)邊,sin
A
2
=
5
5
,b2+c2-a2=6.
(Ⅰ)求△ABC的面積;
(Ⅱ)若sinA=sinBsinC,求△ABC的外接圓半徑.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知f(x)=(
x-1
x+1
2,(x≥1),g(x)是f(x)的反函數(shù),記h(x)=
1
g(x)
+
x
+2,求:h(x)的解析式及其最小值.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知F1、F2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左右兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)P(-1,
2
2
)在橢圓上,線段PF2與y軸的交點(diǎn)M滿足:點(diǎn)M是線段PF2的中點(diǎn);直線l:y=kx+m與以F1F2為直徑的圓O相切,并與橢圓交于不同的兩點(diǎn)A、B.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)
OA
OB
=λ,求證:λ=
k2+1
2k2+1

(3)當(dāng)(2)中的λ滿足
2
3
≤λ≤
3
4
時(shí),求△AOB面積S的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+xlnx(a∈R)的圖象在點(diǎn)(1,f(1))處的切線與直線x+3y=0垂直.
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)求證:當(dāng)n>m>0時(shí),lnn-lnm>
m
n
-
n
m
;
(Ⅲ)若存在k∈Z,使得f(x)>k恒成立,求實(shí)數(shù)k的最大值.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知橢圓的中心為原點(diǎn)O,長(zhǎng)軸長(zhǎng)為4
2
,一條準(zhǔn)線的方程為y=
8
7
7

(Ⅰ)求該橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)射線y=2
2
x(x≥0)與橢圓的交點(diǎn)為M,過(guò)M作傾斜角互補(bǔ)的兩條直線,分別與橢圓交于A,B兩點(diǎn)(A,B兩點(diǎn)異于M).求證:直線AB的斜率為定值.

查看答案和解析>>

科目: 來(lái)源: 題型:

如圖,兩座建筑物AB,CD的底部在同一個(gè)水平面上,且均與水平面垂直,他們的高度分別是12m和20m,從建筑物AB的頂部A看建筑物CD的視角∠CAD=45°.
(Ⅰ)求BC的長(zhǎng)度;
(Ⅱ)在線段AB上取一點(diǎn)P,從點(diǎn)P看建筑物CD的視角為∠CPD,問(wèn)點(diǎn)P在何處時(shí),∠CPD最大?

查看答案和解析>>

科目: 來(lái)源: 題型:

已知橢圓C的焦點(diǎn)是F1(0,-
3
),F(xiàn)2(0,
3
),點(diǎn)P在橢圓上且滿足|PF1|+|PF2|=4.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓C的上下頂點(diǎn)分別為A1、A2,右頂點(diǎn)為B,圓E與以線段OA1為直徑的圓關(guān)于直線A2B對(duì)稱(chēng).求圓E的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目: 來(lái)源: 題型:

求函數(shù)y=|1-
1
x
-
1
x-1
|最小值.

查看答案和解析>>

科目: 來(lái)源: 題型:

如圖:在四棱錐P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,點(diǎn)M、N分別為BC、PA的中點(diǎn),且PA=AB=2.
(Ⅰ)證明:BC⊥平面AMN;
(Ⅱ)求三棱錐N-AMC的體積.

查看答案和解析>>

科目: 來(lái)源: 題型:

設(shè)等比數(shù)列{an}滿足a5-a1=80,前4項(xiàng)和S4=40.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}滿足bn=
1
an
log3an,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案