相關(guān)習(xí)題
 0  211314  211322  211328  211332  211338  211340  211344  211350  211352  211358  211364  211368  211370  211374  211380  211382  211388  211392  211394  211398  211400  211404  211406  211408  211409  211410  211412  211413  211414  211416  211418  211422  211424  211428  211430  211434  211440  211442  211448  211452  211454  211458  211464  211470  211472  211478  211482  211484  211490  211494  211500  211508  266669 

科目: 來(lái)源: 題型:

證明:(1)對(duì)于任意n≥3,n∈N*
1
1
+
1
2
+
1
3
+…+
1
n
n+1
;
(2)對(duì)于任意n≥2,n∈N*,
1
12
+
1
22
+
1
32
+…+
1
n2
2-
1
n

查看答案和解析>>

科目: 來(lái)源: 題型:

設(shè)Tn為數(shù)列{an}的前n項(xiàng)的積,即Tn=a1•a2…•an
(1)若Tn=n2,求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{an}滿(mǎn)足Tn=
1
2
(1-an)(n∈N*),證明數(shù)列{
1
Tn
}為等差數(shù)列,并求{an}的通項(xiàng)公式;
(3)數(shù)列{an}共有100項(xiàng),且滿(mǎn)足以下條件:
①a1•a2…•a100=2;
②a1•a2…•ak+ak+1•ak+2…a100=k+2(1≤k≤99,k∈N*).
(Ⅰ)求a5的值;
(Ⅱ)試問(wèn)符合條件的數(shù)列共有多少個(gè)?為什么?

查看答案和解析>>

科目: 來(lái)源: 題型:

如果數(shù)列{an}同時(shí)滿(mǎn)足:(1)各項(xiàng)均為正數(shù),(2)存在常數(shù)k,對(duì)任意n∈N*,an+12=anan+2+k都成立,那么,這樣的數(shù)列{an}我們稱(chēng)之為“類(lèi)等比數(shù)列”.由此各項(xiàng)均為正數(shù)的等比數(shù)列必定是“類(lèi)等比數(shù)列”.問(wèn):
(1)若數(shù)列{an}為“類(lèi)等比數(shù)列”,且k=(a2-a12,求證:a1、a2、a3成等差數(shù)列;
(2)若數(shù)列{an}為“類(lèi)等比數(shù)列”,且k=0,a2、a4、a5成等差數(shù)列,求
a2
a1
的值;
(3)若數(shù)列{an}為“類(lèi)等比數(shù)列”,且a1=a,a2=b(a、b為常數(shù)),是否存在常數(shù)λ,使得an+an+2=λan+1對(duì)任意n∈N*都成立?若存在,求出λ;若不存在,說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知公差大于0的等差數(shù)列{an},a2=4,且a2,a4-2,a6成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}的通項(xiàng)公式是bn=2an,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=(x2-2x)•lnx+ax2+2
(Ⅰ)當(dāng)a=-1時(shí),求f(x)在(1,f(1))處的切線(xiàn)方程;
(Ⅱ)設(shè)函數(shù)g(x)=f(x)-x-2;
(i)若函數(shù)g(x)有且僅有一個(gè)零點(diǎn)時(shí),求a的值;
(ii)在(i)的條件下,若e-2<x<e,g(x)≤m,求m的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且滿(mǎn)足3Sn=4028+an(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)f(n)表示該數(shù)列的前n項(xiàng)的乘積,問(wèn)n取何值時(shí),f(n)有最大值?

查看答案和解析>>

科目: 來(lái)源: 題型:

某校從參加某次知識(shí)競(jìng)賽的同學(xué)中,選取60名同學(xué)將其成績(jī)(百分制,均為整數(shù))分成[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]六組后,得到部分頻率分布直方圖(如圖),觀察圖形中的信息,回答下列問(wèn)題.
(Ⅰ)求分?jǐn)?shù)在[70,80)內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(Ⅱ)從頻率分布直方圖中,估計(jì)本次考試成績(jī)的中位數(shù);
(Ⅲ)若從第1組和第6組兩組學(xué)生中,隨機(jī)抽取2人,求所抽取2人成績(jī)之差的絕對(duì)值大于10的概率.

查看答案和解析>>

科目: 來(lái)源: 題型:

如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AE⊥CD于點(diǎn)E,DA平分∠BDE.
(1)證明:AE是⊙O的切線(xiàn);
(2)如果AB=4,AE=2,求CD.

查看答案和解析>>

科目: 來(lái)源: 題型:

某銀行柜臺(tái)有服務(wù)窗口①,假設(shè)顧客在此辦理業(yè)務(wù)所需的時(shí)間互相獨(dú)立,且都是整數(shù)分鐘,對(duì)以往顧客辦理業(yè)務(wù)所需的時(shí)間統(tǒng)計(jì)結(jié)果如下:
辦理業(yè)務(wù)所需的時(shí)間/分 1 2 3 4 5
        頻率 0.1 0.4 a 0.1 0.1
從第一個(gè)顧客開(kāi)始辦理業(yè)務(wù)時(shí)計(jì)時(shí),
(1)求a的值;
(2)估計(jì)第三個(gè)顧客恰好等待4分鐘開(kāi)始辦理業(yè)務(wù)的概率.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知α為銳角,且tanα=
2
-1.若
m
=(4x,1),
n
=(cos2(α+
π
8
),tan2α),函數(shù)f(x)=
m
n

(Ⅰ)求函數(shù)f(x)的表達(dá)式;
(Ⅱ)若數(shù)列{an}的首項(xiàng)a1=1,an+1=f(an),求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案