相關(guān)習題
 0  211569  211577  211583  211587  211593  211595  211599  211605  211607  211613  211619  211623  211625  211629  211635  211637  211643  211647  211649  211653  211655  211659  211661  211663  211664  211665  211667  211668  211669  211671  211673  211677  211679  211683  211685  211689  211695  211697  211703  211707  211709  211713  211719  211725  211727  211733  211737  211739  211745  211749  211755  211763  266669 

科目: 來源: 題型:

在△ABC中,內(nèi)角A、B、C所對的邊的長分別為a,b,c,證明下面問題.
(Ⅰ)
1
a3
+
1
b3
+
1
c3
+abc≥2
3
;
(Ⅱ)
1
A
+
1
B
+
1
C
9
π

查看答案和解析>>

科目: 來源: 題型:

角A、B、C為△ABC的三個內(nèi)角,且角B滿足sinB+cos(B+
π
6
)=
3
2

(1)求角B的值;
(2)若sinA+sinC>k恒成立,試求實數(shù)k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=(a+1)lnx+ax2+1,且a≤-2.
證明:對任意的x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2|.

查看答案和解析>>

科目: 來源: 題型:

已知△ABC的三個內(nèi)角A、B、C成等差數(shù)列,a、b、c分別為△ABC所對的邊.求證:
1
a+b
+
1
b+c
=
3
a+b+c
(注:可以用分析法證明)

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=4cosx•sin(x+
π
6
)+a的最大值為2.
(1)求a的值及f(x)的最小正周期;
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目: 來源: 題型:

高三年級某班的所有考生全部參加了“語文”和“數(shù)學”兩個科目的學業(yè)水平考試.其中“語文”和“數(shù)學”的兩科考試成績的數(shù)據(jù)統(tǒng)計如下圖(按[0,10),[10,20),…,[80,90),[90,100)分組)所示,其中“數(shù)學”科目的成績在[70,80),分數(shù)段的考生有16人.
(1)求該班考生“語文”科目成績在[90,100),分數(shù)段的人數(shù);
(2)根據(jù)數(shù)據(jù)合理估計該班考生“數(shù)學”科目成績的平均分,并說明理由;
(3)若要從“數(shù)學”科目分數(shù)在[50,60)和[90,100)之間的試卷中任取兩份分析學生的答題情況,在抽取的試卷中,求至少有一份分數(shù)在[50,60)之間的概率.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=sinx+acosx的圖象經(jīng)過點(-
π
3
,0).
(1)求實數(shù)a的值;
(2)求函數(shù)f(x)的最小正周期與單調(diào)遞增區(qū)間.

查看答案和解析>>

科目: 來源: 題型:

(1)用綜合法證明:a+b+c≥
ab
+
bc
+
ca
(a,b,c∈R+
(2)用反證法證明:若a,b,c均為實數(shù),且a=x2-2y+
π
2
,b=y2-2z+
π
3
,c=z2-2x+
π
6
,求證:a,b,c中至少有一個大于0.

查看答案和解析>>

科目: 來源: 題型:

為了了解調(diào)研高一年級新學生的智力水平,某校按l 0%的比例對700名高一學生按性別分別進行“智力評分”抽樣檢查,測得“智力評分”的頻數(shù)分布表如表l,表2.
表1:男生“智力評分”頻數(shù)分布表
智力評分 [160,165) [165,170) [170,175) [175,180) [180,185) [185,190)
頻數(shù) 2 5 14 13 4 2
表2:女生“智力評分”頻數(shù)分布表
智力評分 [150,155) [155,160) [160,165) [165,170) [170,175) [175,180)
頻數(shù) 1 7 12 6 3 1
(Ⅰ)求高一的男生人數(shù)并完成如圖所示的男生的頻率分布直方圖;
(Ⅱ)估計該校學生“智力評分”在[165,180)之間的概率;
(Ⅲ)從樣本中“智力評分”在[180,190)的男生中任選2人,求至少有1人“智力評分”在[185,190)之間的概率.

查看答案和解析>>

科目: 來源: 題型:

如圖1,在邊長為3的等邊三角形ABC中,D,E分別是AB,AC邊上的點,AD=AE,F(xiàn)是BC的中點,AF與DE交于點G,將△ABF沿AF折起,得到如圖2所示的三棱錐A-BCF,其中BC=
3
2
2

(Ⅰ)證明:DE∥平面BCF;
(Ⅱ)證明:CF⊥平面ABF;
(Ⅲ)當AD=
2
3
AB時,求三棱錐F-DEG的體積VD-EFG

查看答案和解析>>

同步練習冊答案