相關(guān)習(xí)題
 0  213328  213336  213342  213346  213352  213354  213358  213364  213366  213372  213378  213382  213384  213388  213394  213396  213402  213406  213408  213412  213414  213418  213420  213422  213423  213424  213426  213427  213428  213430  213432  213436  213438  213442  213444  213448  213454  213456  213462  213466  213468  213472  213478  213484  213486  213492  213496  213498  213504  213508  213514  213522  266669 

科目: 來源: 題型:

在△ABC中,已知
sinC
sinBcosA
=
2c
b

(1)求A的大;
(2)若b=4,△ABC的面積S=2
3
,求邊長a.

查看答案和解析>>

科目: 來源: 題型:

座落于我市紅梅公園邊的天寧寶塔堪稱中華之最,也堪稱佛塔世界之最.如圖,已知天寧寶塔AB高度為150米,某大樓CD高度為90米,從大樓CD頂部C看天寧寶塔AB的張角∠ACB=45°,求天寧寶塔AB與大樓CD底部之間的距離BD.

查看答案和解析>>

科目: 來源: 題型:

某社區(qū)舉辦防控甲型H7N9流感知識(shí)有獎(jiǎng)問答比賽,甲、乙、丙三人同時(shí)回答一道衛(wèi)生知識(shí)題,三人回答正確與錯(cuò)誤互不影響.已知甲回答這題正確的概率是
3
4
,甲、丙兩人都回答錯(cuò)誤的概率是
1
12
,乙、丙兩人都回答正確的概率是
1
4

(Ⅰ)求乙、丙兩人各自回答這道題正確的概率;
(Ⅱ)用ξ表示回答該題正確的人數(shù),求ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=2tan(ωx+
π
3
)(ω>0)
的最小正周期為
π
2

(Ⅰ)求函數(shù)f(x)的定義域;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目: 來源: 題型:

在三棱拄ABC-A1B1C1中,AB⊥側(cè)面BB1C1C,已知BC=1,∠BCC1=
π
3
,AB=CC1=2.
(Ⅰ)求證:C1B⊥平面ABC;
(Ⅱ)試在棱CC1(不包含端點(diǎn)C,C1)上確定一點(diǎn)E的位置,使得EA⊥EB1;
(Ⅲ)在(Ⅱ)的條件下,求AE和平面ABC所成角正弦值的大。

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=loga(2x+2),g(x)=loga(2x-2)(a>0,且a≠1).
(1)求函數(shù)h(x)=f(x)-g(x)的定義域;
(2)判斷函數(shù)h(x)=f(x)-g(x)在x∈(1,+∞)內(nèi)的單調(diào)性,并用定義給予證明;
(3)當(dāng)a=2時(shí),若對(duì)[3,5]上的任意x都有h(x)<2x+m成立,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn)O,對(duì)稱軸為x軸,焦點(diǎn)為F,拋物線上一點(diǎn)A的橫坐標(biāo)為2,且
FA
OA
=16

(Ⅰ)求拋物線的方程;
(Ⅱ)過點(diǎn)M(8,0)作直線l交拋物線于B,C兩點(diǎn),求證:OB⊥OC.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率e=
5
5
,且橢圓C短軸端點(diǎn)到左焦點(diǎn)的距離為
5

(1)求橢圓C的方程;
(2)過橢圓C的左焦點(diǎn)F任作一條與兩坐標(biāo)軸都不垂直的弦AB,若點(diǎn)Q在x軸上并使得QF為∠AQB的平分線,求點(diǎn)Q的坐標(biāo);
(3)在滿足(2)的條件下,記△AQF與△BQF的面積之比為λ,求λ的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

設(shè)向量
a
=(cosα,sinα)(0≤α<2π),
b
=(-
1
2
,
3
2
)
,且
a
b
不共線,
(Ⅰ)求證:
a
+
b
a
-
b
;
(Ⅱ)若向量
3
a
+
b
a
-
3
b
的模相等,求角α.

查看答案和解析>>

科目: 來源: 題型:

設(shè)x∈R,向量
a
=(1,2),
b
=(x,1)
(Ⅰ)當(dāng)
a
+2
b
與2
a
-
b
平行時(shí),求x;
(Ⅱ)當(dāng)
a
+2
b
與2
a
-
b
垂直時(shí),求|
a
+
b
|.

查看答案和解析>>

同步練習(xí)冊答案