相關習題
 0  228162  228170  228176  228180  228186  228188  228192  228198  228200  228206  228212  228216  228218  228222  228228  228230  228236  228240  228242  228246  228248  228252  228254  228256  228257  228258  228260  228261  228262  228264  228266  228270  228272  228276  228278  228282  228288  228290  228296  228300  228302  228306  228312  228318  228320  228326  228330  228332  228338  228342  228348  228356  266669 

科目: 來源: 題型:填空題

16.雙曲線x2-y2=1的頂點到其漸近線的距離等于$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

15.對于雙曲線C(a,b):$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0),若點P(x0,y0)滿足$\frac{{x}_{0}^{2}}{{a}^{2}}$-$\frac{{y}_{0}^{2}}{^{2}}$<1,則稱P在C(a,b)的外部,若點P(x0,y0)滿足$\frac{{x}_{0}^{2}}{{a}^{2}}$-$\frac{{y}_{0}^{2}}{^{2}}$>1,則稱C(a,b)在的內(nèi)部;
(1)若直線y=kx+1上的點都在C(1,1)的外部,求k的取值范圍;
(2)若C(a,b)過點(2,1),圓x2+y2=r2(r>0)在C(a,b)內(nèi)部及C(a,b)上的點構成的圓弧長等于該圓周長的一半,求b、r滿足的關系式及r的取值范圍;
(3)若曲線|xy|=mx2+1(m>0)上的點都在C(a,b)的外部,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.若雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個焦點到一條漸近線的距離等于焦距的$\frac{1}{4}$,則該雙曲線的離心率為( 。
A.$\frac{\sqrt{2}}{3}$B.$\frac{2\sqrt{2}}{3}$C.$\frac{\sqrt{2}}{4}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

13.對于雙曲線C(a,b):$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0),若點P(x0,y0)滿足$\frac{{x}_{0}^{2}}{{a}^{2}}$-$\frac{{y}_{0}^{2}}{^{2}}$<1,則稱P在的C(a,b)外部;若
若點P(x0,y0)滿足$\frac{{x}_{0}^{2}}{{a}^{2}}$-$\frac{{y}_{0}^{2}}{^{2}}$>1,則稱P在的C(a,b)內(nèi)部:
(1)證明:直線3x-y+1=0上的點都在C(1,1)的外部;
(2)若點M的坐標為(0,-1),點N在C(1,1)的內(nèi)部或C(1,1)上,求|$\overrightarrow{MN}$|的最小值;
(3)若C(a,b)經(jīng)過點(2,1),圓x2+y2=r2(r>0)在C(a,b)內(nèi)部及C(a,b)上的點構成的圓弧長等于該圓周長的一半,求b、r滿足的關系式及r的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知直線y=2x是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的一條漸近線,點A(1,0),M(m,n)(n≠0)都在雙曲線C上,直線AM與y軸相交于點P,設坐標原點為O.
(1)求雙曲線C的方程,并求出點P的坐標(用m,n表示);
(2)設點M關于y軸的對稱點為N,直線AN與y軸相交于點Q,問:在x軸上是否存在定點T,使得TP⊥TQ?若存在,求出點T的坐標;若不存在,請說明理由.
(3)若過點D(0,2)的直線l與雙曲線C交于R,S兩點,且|$\overrightarrow{OR}$+$\overrightarrow{OS}$|=|$\overrightarrow{RS}$|,試求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:選擇題

11.已知雙曲線:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,焦距為2c,直線y=$\sqrt{3}$(x+c)與雙曲線的一個交點M滿足∠MF1F2=2∠MF2F1,則雙曲線的離心率為(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{3}$+1

查看答案和解析>>

科目: 來源: 題型:選擇題

10.已知O為坐標原點,雙曲線$C:\frac{x^2}{a^2}-{y^2}=1(a>0)$上有一點P,過點P作雙曲線C的兩條漸近線的平行線,與兩漸近線的交點分別為A,B,若平行四邊形OAPB的面積為1,則雙曲線C的離心率為(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知點A(-4,0),直線l:x=-1與x軸交于點B,動點M到A,B兩點的距離之比為2.
(Ⅰ)求點M的軌跡C的方程;
(Ⅱ)設C與x軸交于E,F(xiàn)兩點,P是直線l上一點,且點P不在C上,直線PE,PF分別與C交于另一點S,T,證明:A,S,T三點共線.

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知等比數(shù)列{an}的前n項為和Sn,且a3-2a2=0,S3=7.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列$\left\{{\frac{n}{a_n}}\right\}$的前n項和Tn

查看答案和解析>>

科目: 來源: 題型:填空題

7.已知F是雙曲線C:x2-$\frac{{y}^{2}}{8}$=1的右焦點,若P是C的左支上一點,A(0,6$\sqrt{6}$)是y軸上一點,則△APF面積的最小值為6+9$\sqrt{6}$.

查看答案和解析>>

同步練習冊答案