A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\frac{{\sqrt{5}}}{2}$ |
分析 求得雙曲線的漸近線方程,設P(m,n)是雙曲線上任一點,設過P平行于x+ay=0的直線為l,求得l的方程,聯(lián)立另一條漸近線可得交點A,|OA|,求得P到OA的距離,由平行四邊形的面積公式,化簡整理,解方程可得a=2,求得c,進而得到所求雙曲線的離心率.
解答 解:由雙曲線方程可得漸近線方程x±ay=0,
設P(m,n)是雙曲線上任一點,設過P平行于x+ay=0的直線為l,
則l的方程為:x+ay-m-an=0,l與漸近線x-ay=0交點為A,
則A($\frac{m+an}{2}$,$\frac{m+an}{2a}$),|OA|=|$\frac{m+an}{2}$|$\sqrt{1+\frac{1}{a^2}}$,
P點到OA的距離是:$d=\frac{{|{m-an}|}}{{\sqrt{1+{a^2}}}}$,
∵|OA|•d=1,∴|$\frac{m+an}{2}$|•$\sqrt{1+\frac{1}{a^2}}$.$\frac{{|{m-an}|}}{{\sqrt{1+{a^2}}}}$=1,
∵$\frac{m^2}{a^2}-{n^2}=1$,∴a=2,∴$c=\sqrt{5}$,
∴$e=\frac{{\sqrt{5}}}{2}$.
故選:D.
點評 本題考查雙曲線的離心率的求法,注意運用漸近線方程和兩直線平行的條件:斜率相等,聯(lián)立方程求交點,考查化簡整理的運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 向左平移$\frac{π}{3}$個單位 | B. | 向右平移$\frac{π}{3}$個單位 | ||
C. | 向左平移$\frac{π}{6}$個單位 | D. | 向右平移$\frac{π}{6}$個單位 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{5}{6}$ | C. | $\frac{7}{12}$ | D. | $\frac{11}{18}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2\sqrt{3}}{3}$ | B. | $\sqrt{3}$+1 | C. | $\frac{\sqrt{5}}{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=-x3 | B. | y=x2 | C. | y=tanx-x | D. | y=$\frac{1}{x}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com