相關習題
 0  229032  229040  229046  229050  229056  229058  229062  229068  229070  229076  229082  229086  229088  229092  229098  229100  229106  229110  229112  229116  229118  229122  229124  229126  229127  229128  229130  229131  229132  229134  229136  229140  229142  229146  229148  229152  229158  229160  229166  229170  229172  229176  229182  229188  229190  229196  229200  229202  229208  229212  229218  229226  266669 

科目: 來源: 題型:解答題

9.已知a,b,c∈R+,求證:$\frac{bc}{a}$+$\frac{ac}$+$\frac{ab}{c}$≥a+b+c.

查看答案和解析>>

科目: 來源: 題型:解答題

8.2016年春節(jié)期間全國流行在微信群發(fā)紅包,搶紅包,現假設某人將688元發(fā)成手氣紅包50個,產生的手氣紅包頻數分布表如下:
金額分組[1,5)[5,9)[9,13)[13,17)[17,21)[21,25)
 頻數 3 1711  82
(1)求產生的手氣紅包的金額不小于9元的頻率;
(2)估計手氣紅包金額的平均數(同一組的數據用該組區(qū)間的中值點做代表);
(3)在這50個紅包組成的樣本中,隨機抽取兩名手氣紅包金額在[1,5)∪[21,25]內的幸運者,設其紅包金額分別為m,n,求|m-n|>16的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知函數f(x)=|x+1|+|x-2|,不等式f(x)≥t對?x∈R恒成立.
(1)求t的取值范圍;
(2)記t的最大值為T,若正實數a,b滿足a2+b2=T,求證:$\frac{2}{{\frac{1}{a}+\frac{1}}}$≤$\frac{{\sqrt{6}}}{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

6.在四棱錐P-ABCD中,AD∥BC,DC⊥AD,PA⊥平面ABCD,2AD=BC=2$\sqrt{3}$,∠DAC=30°,M為PB中點.
(1)證明:AM∥平面PCD;
(2)若三棱錐M-PCD的體積為$\frac{{\sqrt{3}}}{6}$,求M到平面PCD的距離.

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知a+b=1,(a+$\frac{1}{2}$)(b+$\frac{1}{2}$)≥0,求證:$\sqrt{a+\frac{1}{2}}$+$\sqrt{b+\frac{1}{2}}$≤2.

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知橢圓C1:$\frac{x^2}{6}$+$\frac{y^2}{b^2}$=1(b>0)的左、右焦點分別為F1、F2,點F2也為拋物線C2:y2=8x的焦點,過點F2的直線l交拋物線C2于A,B兩點.
(Ⅰ)若點P(8,0)滿足|PA|=|PB|,求直線l的方程;
(Ⅱ)T為直線x=-3上任意一點,過點F1作TF1的垂線交橢圓C1于M,N兩點,求$\frac{{|{T{F_1}}|}}{{|{MN}|}}$的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

3.甲、乙兩名運動員進行2016里約奧運會選拔賽,約定先連勝兩局者直接贏得比賽,若賽完5局仍未出現連勝,則判定獲勝局數多者贏得比賽.假設每局甲獲勝的概率為$\frac{1}{2}$,乙獲勝的概率為$\frac{1}{2}$,各局比賽結果相互獨立.
(Ⅰ)求甲在3局以內(含3局)贏得比賽的概率;
(Ⅱ)記X為比賽決出勝負時的總局數,求X的分布列和數學期望.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右頂點是圓x2+y2-4x+3=0的圓心,其離心率為$\frac{{\sqrt{3}}}{2}$,則橢圓C的方程為( 。
A.$\frac{x^2}{4}$+y2=1B.$\frac{x^2}{3}$+y2=1C.$\frac{x^2}{2}$+y2=1D.$\frac{x^2}{4}$+$\frac{y^2}{3}$=1

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{2\sqrt{5}}}{5}$,直線mx+y+1=1恒過橢圓的一個頂點.
(I)求橢圓的標準方程;
(Ⅱ)設O為坐標原點,P為橢圓的右焦點,過F的直線l(l不與坐標軸垂直)交橢圓于A,B兩點,C為AB的中點,D為A關于x軸的對稱點.
(i)求證:直線OC與過點F且與l垂直的直線的交點在直線x=$\frac{5}{2}$上;
(ii)在x軸上是否存在定點T,使B、D、T三點共線?若存在,求出T點坐標;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

20.環(huán)保部門在某社區(qū)對年齡在10到55歲的居民隨機抽取了2000名進行環(huán)保知識測評,測試結果按年齡分組如表:
分組[10,25)[25,40)[40,55]
成績優(yōu)秀670ab
成績一般8060c
已知在全部樣本中隨機抽取1人,抽到年齡在[25,40)間測試成績優(yōu)秀的概率是0.32.
(I)現用分層抽樣的方法在全部樣本中抽取200人,問年齡在[40,55]內共抽取多少人?
(Ⅱ)當社區(qū)測試總優(yōu)秀率不小于90%,可獲評愛護環(huán)境先進單位獎,已知b≥485,c≥55,問在此前提下該社區(qū)獲獎的概率.

查看答案和解析>>

同步練習冊答案