7.已知函數(shù)f(x)=|x+1|+|x-2|,不等式f(x)≥t對?x∈R恒成立.
(1)求t的取值范圍;
(2)記t的最大值為T,若正實數(shù)a,b滿足a2+b2=T,求證:$\frac{2}{{\frac{1}{a}+\frac{1}}}$≤$\frac{{\sqrt{6}}}{2}$.

分析 (1)利用絕對值三角不等式求出f(x)的最小值,即可求t的取值范圍;
(2)求出t的最大值為T,化簡a2+b2=T,利用基本不等式證明:$\frac{2}{{\frac{1}{a}+\frac{1}}}$≤$\frac{{\sqrt{6}}}{2}$.

解答 解:(1)f(x)=|x+1|+|2-x|≥|x+1+2-x|=3,所以t≤3.(5分)
(2)證明:由(1)知T=3,所以a2+b2=3(a>0,b>0)
因為a2+b2≥2ab,所以$ab≤\frac{3}{2}$,又因為$\frac{1}{a}+\frac{1}≥\frac{2}{{\sqrt{ab}}}$,
所以$\frac{2}{{\frac{1}{a}+\frac{1}}}≤\sqrt{ab}≤\frac{{\sqrt{6}}}{2}$(當且僅當a=b時取“=”).(10分)

點評 本題考查絕對值不等式的值應(yīng)用,基本不等式的應(yīng)用,考查邏輯推理能力以及計算能力,轉(zhuǎn)化思想的應(yīng)用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

17.設(shè)隨機變量X的分布列為P(X=i)=a($\frac{1}{2}$)i,i=1,2,3,4,則實數(shù)a的值為( 。
A.1B.$\frac{8}{15}$C.$\frac{16}{15}$D.$\frac{8}{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.用適當?shù)姆椒ㄗC明下列不等式
(1)已知a,b,c是正實數(shù),證明不等式$\frac{a+b}{2}•\frac{b+c}{2}•\frac{c+a}{2}$≥abc;
(2)求證:當a>1時,$\sqrt{a+1}+\sqrt{a-1}<2\sqrt{a}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.求以點C(2,1)為圓心,且與直線4x-3y=0相切的圓的方程(x-2)2+(y-1)2=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右頂點是圓x2+y2-4x+3=0的圓心,其離心率為$\frac{{\sqrt{3}}}{2}$,則橢圓C的方程為( 。
A.$\frac{x^2}{4}$+y2=1B.$\frac{x^2}{3}$+y2=1C.$\frac{x^2}{2}$+y2=1D.$\frac{x^2}{4}$+$\frac{y^2}{3}$=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.設(shè)P為橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上任一點,F(xiàn)1,F(xiàn)2為橢圓的焦點,|PF1|+|PF2|=4,離心率為$\frac{{\sqrt{3}}}{2}$.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)直線l:y=kx+m(m≠0)經(jīng)過點(-1,0),且與橢圓交于P、Q兩點,若直線OP,PQ,OQ的斜率依次成等比數(shù)列,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.如圖所示,已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),⊙O:x2+y2=b2,點A、F分別是橢圓C的左頂點和左焦點,點P是⊙O上的動點,且$\frac{{|{PA}|}}{{|{PF}|}}$為定值,則橢圓C的離心率為( 。
A.$\frac{{\sqrt{2}-1}}{2}$B.$\frac{{\sqrt{3}-1}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{5}-1}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知x>0,y>0,z>0,且xyz=1,求證:x3+y3+z3≥xy+yz+xz.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.從0,1,2,3,4這五個數(shù)中任選三個不同的數(shù)組成一個三位數(shù),記X為所組成的三位數(shù)各位數(shù)字之和.
(1)求X是奇數(shù)的概率;
(2)求X的概率分布列及數(shù)學期望.

查看答案和解析>>

同步練習冊答案