相關(guān)習題
 0  229275  229283  229289  229293  229299  229301  229305  229311  229313  229319  229325  229329  229331  229335  229341  229343  229349  229353  229355  229359  229361  229365  229367  229369  229370  229371  229373  229374  229375  229377  229379  229383  229385  229389  229391  229395  229401  229403  229409  229413  229415  229419  229425  229431  229433  229439  229443  229445  229451  229455  229461  229469  266669 

科目: 來源: 題型:選擇題

7.已知曲線$y=\frac{2x}{x-1}$在點P(2,4)處的切線與直線l平行且距離為$2\sqrt{5}$,則直線l的方程為(  )
A.2x+y+2=0B.2x+y+2=0或2x+y-18=0
C.2x-y-18=0D.2x-y+2=0或2x-y-18=0

查看答案和解析>>

科目: 來源: 題型:解答題

6.如圖,在三棱錐A-BCD中,AB=AC=AD=BC=CD=4,$BD=4\sqrt{2}$,E,F(xiàn)分別為AC,CD的中點,G為線段BD上一點.
(Ⅰ)求直線BE和AF所成角的余弦值;
(Ⅱ)當直線BE∥平面AGF時,求四棱錐A-BCFG的體積.

查看答案和解析>>

科目: 來源: 題型:填空題

5.設(shè)定義在R上的奇函數(shù)f(x),其導函數(shù)為f′(x),且f(1)=0,若x>0時,f(x)+xf′(x)>0,則關(guān)于x的不等式f(x)≥0的解集為[-1,0]∪[1,+∞).

查看答案和解析>>

科目: 來源: 題型:填空題

4.對于n∈N*,將n表示為$n={a_0}•{2^k}+{a_1}•{2^{k-1}}+…+{a_{k-1}}•{2^1}+{a_k}•{2^0}$,
當i=0時,ai=1,
當1≤i≤k時,ai=0或1.
記I(n)為上述表示中a為0的個數(shù)(例如:1=1•20,4=1•22+0•21+0•20,所以I(1)=0,I(4)=2),
則(1)I(12)=2,(2)I(1)+I(2)+…+I(2048)=9228.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知函數(shù)f(x)=x-1-a(x-1)2-lnx(a∈R).
(1)當a=0時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)g(x)=f(x)-x+1有一個極小值點和一個極大值點,求a的取值范圍;
(3)若存在k∈(1,2),使得當x∈(0,k]時,f(x)的值域是[f(k),+∞),求a的取值范圍.注:自然對數(shù)的底數(shù)e=2.71828…

查看答案和解析>>

科目: 來源: 題型:解答題

2.某社區(qū)為調(diào)查當前居民的睡眠狀況,從該社區(qū)的[10,70]歲的人群中隨機抽取n人進行一次日平均睡眠時間的調(diào)查.這n人中各年齡組人數(shù)的頻率分布直方圖如圖1所示,統(tǒng)計各年齡組的“亞健康族”(日平均睡眠時間符合健康標準的稱為“健康族”,否則稱為“亞健康族”)人數(shù)及相應(yīng)頻率,得到統(tǒng)計表如表所示.
組數(shù)分組亞健康族的人數(shù)占本組的頻率
第一組[10,20)1000.5
第二組[20,30)195P
第三組[30,40)1200.6
第四組[40,50)a0.4
第五組[50,60)300.3
第六組[60,70)150.3
(Ⅰ)求n、P的值.
(Ⅱ)用分層抽樣的方法從年齡在[30,50)歲的“壓健康族”中抽取6人參加健康睡眠體檢活動,現(xiàn)從6人中隨機選取2人擔任領(lǐng)隊,求2名領(lǐng)隊中恰有1人年齡在[40,50)歲的概率.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.我國古代數(shù)學名著《九章算術(shù)》中的更相減損法的思路與圖相似.執(zhí)行該程序框圖,若輸入的a,b分別為14,18,則輸出的a=( 。
A.2B.4C.6D.8

查看答案和解析>>

科目: 來源: 題型:解答題

20.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦點分別為F1,F(xiàn)2,且離心率為$\frac{1}{2}$,點P為橢圓上一動點,△F1PF2面積的最大值為$\sqrt{3}$.
(1)求橢圓的方程;
(2)設(shè)橢圓的左頂點為A1,過右焦點F2的直線l與橢圓相交于A,B兩點,連結(jié)A1A,A1B并延長分別交直線x=4于P,Q兩點,問$\overrightarrow{P{F_2}}•\overrightarrow{Q{F_2}}$是否為定值?若是,求出此定值;若不是,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點(0,$\sqrt{3}$),離心率為$\frac{1}{2}$,且F1、F2分別為橢圓的左右焦點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點M(-4,0)作斜率為k(k≠0)的直線l,交橢圓C于B、D兩點,N為BD中點,請說明存在實數(shù)k,使得以F1F2為直徑的圓經(jīng)過N點(不要求求出實數(shù)k).

查看答案和解析>>

科目: 來源: 題型:填空題

18.設(shè)f′(x)是奇函數(shù)f(x)(x∈R)的導函數(shù),f(-2)=0,當x>0時,xf′(x)-f(x)>0,則使得f(x)>0成立的x的取值范圍是(-2,0)∪(2,+∞).

查看答案和解析>>

同步練習冊答案