相關(guān)習(xí)題
 0  230558  230566  230572  230576  230582  230584  230588  230594  230596  230602  230608  230612  230614  230618  230624  230626  230632  230636  230638  230642  230644  230648  230650  230652  230653  230654  230656  230657  230658  230660  230662  230666  230668  230672  230674  230678  230684  230686  230692  230696  230698  230702  230708  230714  230716  230722  230726  230728  230734  230738  230744  230752  266669 

科目: 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=a(lnx-x)-3(a∈R,a≠0)的圖象在點(diǎn)(2,f(2))處的切線(xiàn)斜率為1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對(duì)任意t∈[0,1],函數(shù)g(x)=x3+x2($\frac{m}{2}$+f′(x))在區(qū)間(t,2)上總存在極值,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

6.已知五邊形ABCDE由直角梯形ABCD與直角△ADE構(gòu)成,如圖1所示,AE⊥DE,AB∥CD,AB⊥AD,且AD=CD=2DE=3AB,將梯形ABCD沿著AD折起,形成如圖2所示的幾何體,且使平面ABCD⊥平面ADE.
(Ⅰ)在線(xiàn)段CE上存在點(diǎn)M,且$\frac{EM}{CE}$=$\frac{1}{3}$,證明BM∥平面ADE;
(Ⅱ)求二面角B-CE-D的平面角的余弦值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=ax2+bx+c(a>0,b,c∈R).
(1)若函數(shù)f(x)的最小值是f(-1)=0,且c=1,
①求a、b的值;
②解不等式f(x)>4.
(2)若a=1,c=0,且-1≤f(x)≤1在區(qū)間(0,1]上恒成立,試求b的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

4.函數(shù)f(x)的定義域?yàn)镽,其導(dǎo)函數(shù)為f′(x),對(duì)任意的x∈R,總有f(-x)+f(x)=$\frac{{x}^{2}}{2}$;當(dāng)x∈(0,+∞)時(shí),f′(x)<$\frac{x}{2}$,若f(4-m)-f(m)≥4-2m,則實(shí)數(shù)m的取值范圍是[2,+∞).

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=exlnx-aex(a∈R).
(1)若f(x)在點(diǎn)(1,f(1))處的切線(xiàn)與直線(xiàn)y=$\frac{1}{e}$x+1垂直,求a的值;
(2)若f(x)在(0,+∞)上是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

2.討論函數(shù)f(x)=(a-1)lnx+ax2+1的單調(diào)性.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

1.在三棱柱ABC-A1B1C1中,∠ACB=90°,AC1⊥平面ABC,BC=CA=AC1
(Ⅰ)求證:AC⊥平面AB1C1;
(Ⅱ)求二面角A1-BB1-C的余弦值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

20.如圖,四棱錐P-ABCD中,底面ABCD是梯形,AB∥CD,∠DAB=60°,AB=AD=2CD,側(cè)面PAD⊥底面ABCD,且△PAD為等腰直角三角形,∠APD=90°,M為AP的中點(diǎn).
(Ⅰ)求證:AD⊥PB;
(Ⅱ)求證:DM∥平面PCB;
(Ⅲ)求PB與平面ABCD所成角的大。

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

19.(1)已知函數(shù)f(x)=x3+bx2+cx+d的單調(diào)減區(qū)間為[-1,2],求b,c的值;
(2)設(shè)f(x)=ax3+x恰好有三個(gè)單調(diào)區(qū)間,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

18.已知cosx>1+ax2對(duì)x∈(0,$\frac{π}{2}$)恒成立,則a的取值范圍$a≤-\frac{4}{{π}^{2}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案