相關(guān)習(xí)題
 0  231287  231295  231301  231305  231311  231313  231317  231323  231325  231331  231337  231341  231343  231347  231353  231355  231361  231365  231367  231371  231373  231377  231379  231381  231382  231383  231385  231386  231387  231389  231391  231395  231397  231401  231403  231407  231413  231415  231421  231425  231427  231431  231437  231443  231445  231451  231455  231457  231463  231467  231473  231481  266669 

科目: 來源: 題型:填空題

15.若函數(shù)f(x)=(a2-4a+4)ax是指數(shù)函數(shù),則a=3.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.已知函數(shù)y=f(x)滿足f(x+2)=f(x),且當(dāng)x∈[-1,1]時,f(x)=x2那么函數(shù)y=f(x)的圖象與函數(shù)y=|lgx|的圖象的交點共有( 。
A.10個B.9個C.8個D.1個

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知關(guān)于x的一元二次方程3x2-2x+k=0,根據(jù)下列條件,分別求出k的范圍:
(1)方程有兩個不相等的實數(shù)根;
(2)方程有兩個相等的實數(shù)根;
(3)方程有實數(shù)根;
(4)方程無實數(shù)根.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.已知定義在(0,+∞)上的函數(shù)f(x)滿足f(x)=f($\frac{1}{x}$),當(dāng)x∈(0,1]時,f(x)=-lnx,若曲線g(x)=f(x)-2ax在(0,e2](其中e是自然對數(shù)的底數(shù))內(nèi)的圖象與x軸有3個交點,則實數(shù)a的取值范圍為( 。
A.($\frac{1}{4e}$,$\frac{1}{e}$)B.($\frac{1}{4e}$,$\frac{1}{2e}$]C.[$\frac{1}{e^2}$,$\frac{1}{e}$)D.[$\frac{1}{e^2}$,$\frac{1}{2e}$)

查看答案和解析>>

科目: 來源: 題型:選擇題

11.執(zhí)行如圖所示的程序框圖,輸出的S值為( 。
A.10B.24C.44D.70

查看答案和解析>>

科目: 來源: 題型:解答題

10.在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為:$\left\{\begin{array}{l}x=cosφ\\ y=1+sinφ\end{array}\right.$(φ為參數(shù)),以O(shè)為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求圓C的極坐標(biāo)方程;
(2)直線l的極坐標(biāo)方程是2ρsin(θ+$\frac{π}{6}$)=3$\sqrt{3}$,射線OM:θ=$\frac{π}{6}$與圓C的交點為O,P,與直線l的交點為Q,求線段PQ的長.

查看答案和解析>>

科目: 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=|2x+1|-|x-3|.
(1)解不等式f(x)>0;
(2)若f(x)+3|x-3|≥t對一切實數(shù)x均成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

8.四棱錐P-ABCD中,AB∥CD,AB⊥BC,AB=BC=2CD=2,AP=PB=3,PC=$\sqrt{5}$.
(Ⅰ)求證:直線PD⊥平面ABCD;
(Ⅱ) E是棱PB的中點,求直線PA與平面AEC所成的角的正弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知函數(shù)f(x)=$\sqrt{3}$sinxcosx+sin2x+$\frac{1}{2}$(x∈R).
(Ⅰ)當(dāng)x∈[-$\frac{π}{12}$,$\frac{5π}{12}$]時,求f(x)的最大值.
(Ⅱ)設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,且c=$\sqrt{3}$,f(C)=2,sinB=2sinA,求a.

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知函數(shù)f(x)=x2-2(a2-a)lnx,g(x)=2a2lnx.
(1)若a=2,求函數(shù)f(x)在(1,f(1))處的切線方程;
(2)當(dāng)a≤$\frac{1}{2}$時,若f(x)>2g(x)在(1,+∞)上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案