相關習題
 0  231892  231900  231906  231910  231916  231918  231922  231928  231930  231936  231942  231946  231948  231952  231958  231960  231966  231970  231972  231976  231978  231982  231984  231986  231987  231988  231990  231991  231992  231994  231996  232000  232002  232006  232008  232012  232018  232020  232026  232030  232032  232036  232042  232048  232050  232056  232060  232062  232068  232072  232078  232086  266669 

科目: 來源: 題型:填空題

11.用秦九韶算法計算f(x)=2x4+3x3+5x-4在x=2的值時,v3的值為33.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.設a,b分別是先后拋擲一枚質地均勻的骰子得到的點數(shù),則事件“方程x2+ax+b=0有兩個不等實根”的概率是( 。
A.$\frac{19}{36}$B.$\frac{17}{36}$C.$\frac{1}{2}$D.$\frac{15}{36}$

查看答案和解析>>

科目: 來源: 題型:解答題

9.函數(shù)f(x)=ax(a>0,a≠1)的圖象經(jīng)過點A(4,16),函數(shù)g(x)=x2+2x+b(b>0).
(1)寫出函數(shù)y=f(x)的解析式;
(2)設x∈[-1,0]時,f(x)>g(x),請寫出b的取值范圍;
(3)設函數(shù)y=f(x)的反函數(shù)y=f-1(x),若當x>0時,函數(shù)y=f-1(x)與y=g(x)至少有一個函數(shù)的函數(shù)值為正實數(shù),求b的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知tanα是關于x的方程2x2-x-1=0的一個實根,且α是第三象限角.
(1)求$\frac{2sinα-cosα}{sinα+cosα}$的值;
(2)求3sin2α-sinαcosα+2cos2α的值.

查看答案和解析>>

科目: 來源: 題型:解答題

7.(1)已知角α的終邊經(jīng)過點P(4,-3),求2sinα+cosα的值.
(2)已知角α的終邊上一點$P(-\sqrt{3},m)(m≠0)$,且$sinα=\frac{{\sqrt{2}m}}{4}$,求cosα及tanα.

查看答案和解析>>

科目: 來源: 題型:解答題

6.在平面直角坐標系xOy中,已知點A(-2,0),B(2,0),動點C滿足條件:△ABC的周長為10,記動點C的軌跡為曲線M.
(1)求曲線M的方程;
(2)若直線l與曲線M相交于E、F兩點,若以EF為直徑的圓過點D(3,0),求證:直線l恒過定點,并求出該定點的坐標.

查看答案和解析>>

科目: 來源: 題型:解答題

5.設$\overrightarrow a=\overrightarrow{e_1}+2\overrightarrow{e_2},\overrightarrow b=-3\overrightarrow{e_1}+2\overrightarrow{e_2}$,其中$\overrightarrow{e_1}⊥\overrightarrow{e_2}$且${\overrightarrow{{e}_{1}}}^{2}$=${\overrightarrow{{e}_{2}}}^{2}$=1
(1)計算$|{\overrightarrow a+\overrightarrow b}|$的值;
(2)當k為何值時,$k\overrightarrow a+\overrightarrow b$與$\overrightarrow a-3\overrightarrow b$互相垂直?

查看答案和解析>>

科目: 來源: 題型:選擇題

4.設α為銳角,若$cos(α+\frac{π}{6})=\frac{3}{5}$,則sin$(α-\frac{π}{12})$=( 。
A.$\frac{{\sqrt{2}}}{10}$B.$-\frac{{\sqrt{2}}}{10}$C.$\frac{4}{5}$D.$-\frac{4}{5}$

查看答案和解析>>

科目: 來源: 題型:選擇題

3.設i為虛數(shù)單位,則$\frac{7+i}{3+4i}$等于( 。
A.1-iB.1+iC.2+iD.1-2i

查看答案和解析>>

科目: 來源: 題型:解答題

2.求下列各式的值:
(1)若$\frac{π}{2}$<α<π,且$sinα=\frac{4}{5}$,求$\frac{sin(2π-α)tan(π+α)cos(-π+α)}{{sin(\frac{π}{2}-α)cos(\frac{π}{2}+α)}}$的值,
(2)化簡$\frac{sin(α+nπ)+sin(α-nπ)}{sin(α+nπ)cos(α-nπ)}$.

查看答案和解析>>

同步練習冊答案