相關(guān)習(xí)題
 0  232552  232560  232566  232570  232576  232578  232582  232588  232590  232596  232602  232606  232608  232612  232618  232620  232626  232630  232632  232636  232638  232642  232644  232646  232647  232648  232650  232651  232652  232654  232656  232660  232662  232666  232668  232672  232678  232680  232686  232690  232692  232696  232702  232708  232710  232716  232720  232722  232728  232732  232738  232746  266669 

科目: 來源: 題型:解答題

19.已知函數(shù)f(x)=|x|+|2x-3|,g(x)=3x2-2(m+1)x+$\frac{15}{4}$;
(1)求不等式f(x)≤6的解集;
(2)若對任意的x∈[-1,1],g(x)≥f(x),求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知直線l1:$\left\{\begin{array}{l}x=t\\ y=\sqrt{3}t\end{array}$(t為參數(shù)),圓C1:(x-${\sqrt{3}$)2+(y-2)2=1,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立直角坐標(biāo)系.
(1)求圓C1的極坐標(biāo)方程,直線l1的極坐標(biāo)方程;
(2)設(shè)l1與C1的交點為M,N,求△C1MN的面積.

查看答案和解析>>

科目: 來源: 題型:解答題

17.Sn為數(shù)列的前n項和,已知an>0,an2+2an=4Sn-1.
(1)求{an}的通項公式;
(2)設(shè)bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目: 來源: 題型:選擇題

16.設(shè)全集U={1,2,3,4,5},A∩B={1,2},(∁UA)∩B={3},A∩(∁UB)={5},則A∪B是( 。
A.{1,2,3}B.{1,2,5}C.{1,2,3,4}D.{1,2,3,5}

查看答案和解析>>

科目: 來源: 題型:選擇題

15.?dāng)?shù)列{an}的首項為1,{bn}為等比數(shù)列且bn=$\frac{{{a_{n+1}}}}{a_n}$(n∈N*),若b4b5=2,則a9=( 。
A.16B.32C.4D.8

查看答案和解析>>

科目: 來源: 題型:填空題

14.y=f(x)為偶函數(shù),又在(-∞,0)上為增函數(shù),則f(-1),f(4),f($\frac{11}{2}$)的大小關(guān)系是f($\frac{11}{2}$)<f(4)<f(-1).(用“<”號連接)

查看答案和解析>>

科目: 來源: 題型:解答題

13.設(shè)a為實數(shù),函數(shù)f(x)=x2e1-x-a(x-1).
(1)當(dāng)a=1時,求f(x)在(${\frac{3}{2}$,2)上的最大值;
(2)設(shè)函數(shù)g(x)=f(x)+a(x-1-e1-x),當(dāng)g(x)有兩個極值點x1,x2(x1<x2)時,總有x2g(x1)≤λf'(x1),求實數(shù)λ的值.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知數(shù)列{an}、{bn}滿足:a1=$\frac{1}{4}$,an+bn=1,bn+1=$\frac{b_n}{1-a_n^2}$.
(1)求數(shù)列{bn}的通項公式;
(2)若cn=$\frac{{{a_n}-a_n^2}}{{{2^n}({1-2{a_n}})({1-3{a_n}})}}$,求證:數(shù)列{cn}的前n項和Sn≥$\frac{3}{4}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

11.已知集合A={x∈R|log3x<1},B={x∈R|x2≥4},則A∩B=( 。
A.{x|-2≤x<0}B.{x|2<x<3}C.{x|2≤x<3}D.{x|x≤-2或2≤x<3}

查看答案和解析>>

科目: 來源: 題型:填空題

10.如圖所示的莖葉圖表示甲、乙兩人在5次綜合測評中的成績,其中一個數(shù)字被污損,則甲的平均成績不低于乙的平均成績的概率為$\frac{9}{10}$.

查看答案和解析>>

同步練習(xí)冊答案