相關(guān)習(xí)題
 0  232989  232997  233003  233007  233013  233015  233019  233025  233027  233033  233039  233043  233045  233049  233055  233057  233063  233067  233069  233073  233075  233079  233081  233083  233084  233085  233087  233088  233089  233091  233093  233097  233099  233103  233105  233109  233115  233117  233123  233127  233129  233133  233139  233145  233147  233153  233157  233159  233165  233169  233175  233183  266669 

科目: 來源: 題型:填空題

11.已知α,β∈(0,$\frac{π}{2}$),滿足tan(α+β)=4tanβ,則tanα的最大值為$\frac{3}{4}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.p:?x∈R,使3x2-2x+c<0,q:對?x∈R,使f(x)=log2(3x2-2x+c)值域為R,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目: 來源: 題型:解答題

9.國內(nèi)某大學(xué)有男生6000人,女生4000人,該校想了解本校學(xué)生的運動狀況,根據(jù)性別采取分層抽樣的方法從全校學(xué)生中抽取100人,調(diào)查他們平均每天運動的時間(單位:小時),統(tǒng)計表明該校學(xué)生平均每天運動的時間范圍是[0,3],若規(guī)定平均每天運動的時間不少于2小時的學(xué)生為“運動達人”,低于2小時的學(xué)生為“非運動達人”.根據(jù)調(diào)查的數(shù)據(jù)按性別與“是否為‘運動達人’”進行統(tǒng)計,得到如表2×2列聯(lián)表:
運動時間
性別 
運動達人非運動達人合計
男生 36
女生 26
合計100 
(1)請根據(jù)題目信息,將2×2列聯(lián)表中的數(shù)據(jù)補充完整,并通過計算判斷能否在犯錯誤概率不超過0.025的前提下認為性別與“是否為‘運動達人’”有關(guān);
(2)將此樣本的頻率估計為總體的概率,隨機調(diào)查該校的3名男生,設(shè)調(diào)查的3人中運動達人的人數(shù)為隨機變量X,求X的分布列和數(shù)學(xué)期望E(X)及方差D(X).附表及公式:
P(K2≥k00.150.100.050.0250.010
k02.0722.7063.8415.0246.635
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目: 來源: 題型:填空題

8.△ABC中,∠BAC=45°,AD⊥BC于D,BD=2,DC=3,則AD的長為6.

查看答案和解析>>

科目: 來源: 題型:填空題

7.若在區(qū)間[0,2π]上隨機取一個數(shù)x,則sinx的值介于0到$\frac{{\sqrt{3}}}{2}$之間的概率為$\frac{1}{3}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

6.cos555°的值為(  )
A.$\frac{{\sqrt{6}+\sqrt{2}}}{4}$B.$\frac{{\sqrt{2}-\sqrt{6}}}{4}$C.$\frac{{\sqrt{6}-\sqrt{2}}}{4}$D.$-\frac{{\sqrt{6}+\sqrt{2}}}{4}$

查看答案和解析>>

科目: 來源: 題型:填空題

5.如圖,游客從某旅游景區(qū)的景點A處下山至C處有兩種路徑.一種是從A沿直線步行到C,另一種是先從A沿索道乘纜車到B,然后從B沿直線步行到C.現(xiàn)有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為50m/min.在甲出發(fā)2min 后,乙從A乘纜車到B,在B處停留1min后,再從B勻速步行到C.假設(shè)纜車勻速直線運行的速度為130m/min,山路AC長為1260m,經(jīng)測量,cos A=$\frac{12}{13}$,cos C=$\frac{3}{5}$.
(Ⅰ)求索道AB的長;
(Ⅱ)問:乙出發(fā)多少分鐘后,乙在纜車上與甲的距離最短?
(Ⅲ)為使兩位游客在C處互相等待的時間不超過3分鐘,乙步行的速度應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

科目: 來源: 題型:解答題

4.前不久商丘市因環(huán)境污染嚴(yán)重被環(huán)保部約談后,商丘市近期加大環(huán)境治理力度,如表提供了商丘某企業(yè)節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對應(yīng)數(shù)據(jù).
x3456
y2.5344.5
(Ⅰ)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程y=bx+a;
(Ⅱ)已知該企業(yè)技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤,試根據(jù)(1)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低了多少噸標(biāo)準(zhǔn)煤?
(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目: 來源: 題型:解答題

3.設(shè)銳角三角形ABC的內(nèi)角A,B,C的對邊分別為a,b,c,a=2bsinA.
(Ⅰ)若a=3$\sqrt{3}$,c=5,求b;
(Ⅱ)求cosA+sinC的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

2.O是面α上一定點,A,B,C是面α上△ABC的三個頂點,∠B,∠C分別是邊AC,AB的對角.以下命題正確的是②③④⑤.(把你認為正確的序號全部寫上)
①動點P滿足$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$,則△ABC的外心一定在滿足條件的P點集合中;
②動點P滿足$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ($\frac{{\overrightarrow{AB}}}{{|{AB}|}}$+$\frac{{\overrightarrow{AC}}}{{|{AC}|}}$)(λ>0),則△ABC的內(nèi)心一定在滿足條件的P點集合中;
③動點P滿足$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ($\frac{{\overrightarrow{AB}}}{{|{AB}|sinB}}$+$\frac{{\overrightarrow{AC}}}{{|{AC}|sinC}}$)(λ>0),則△ABC的重心一定在滿足條件的P點集合中;
④動點P滿足$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ($\frac{{\overrightarrow{AB}}}{{|{AB}|cosB}}$+$\frac{{\overrightarrow{AC}}}{{|{AC}|cosC}}$)(λ>0),則△ABC的垂心一定在滿足條件的P點集合中.
⑤動點P滿足$\overrightarrow{OP}$=$\frac{{\overrightarrow{OB}+\overrightarrow{OC}}}{2}$+λ($\frac{{\overrightarrow{AB}}}{{|{AB}|cosB}}$+$\frac{{\overrightarrow{AC}}}{{|{AC}|cosC}}$)(λ>0),則△ABC的外心一定在滿足條件的P點集合中.

查看答案和解析>>

同步練習(xí)冊答案