分析 過B作BE⊥AC,垂足為E交AD于F,由題意可知:BE=AE,∠EAF=∠EBC,由$\left\{\begin{array}{l}{∠EAF=∠EBC}\\{BE=AE}\\{∠FEA=∠CEB=90°}\end{array}\right.$,△AFE≌△BCE,求得AF=BC=BD+DC=5,∠FBD=∠DAC,由∠BDF=∠ADC=90°,可知△BDF∽△ADC,可得FD:DC=BD:AD,代入即可求得FD,即可求得AD的長.
解答 解:如圖,過B作BE⊥AC,垂足為E交AD于F,
∵∠BAC=45°
∴BE=AE,
∵∠C+∠EBC=90°,∠C+∠EAF=90°,
∴∠EAF=∠EBC,
在△AFE與△BCE中,
由$\left\{\begin{array}{l}{∠EAF=∠EBC}\\{BE=AE}\\{∠FEA=∠CEB=90°}\end{array}\right.$,
∴△AFE≌△BCE,
∴AF=BC=BD+DC=5,∠FBD=∠DAC,
又∵∠BDF=∠ADC=90°,
∴△BDF∽△ADC,
∴FD:DC=BD:AD,
設FD長為x,則x:3=2:(x+5),
解得:x=1,即FD=1,
∴AD=AF+FD=5+1=6,
故答案為:6.
點評 本題考查三角形全等及相似的性質(zhì),考查計算能力,數(shù)形結(jié)合思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 91 | B. | 92 | C. | 94 | D. | 96 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com