相關(guān)習(xí)題
 0  233012  233020  233026  233030  233036  233038  233042  233048  233050  233056  233062  233066  233068  233072  233078  233080  233086  233090  233092  233096  233098  233102  233104  233106  233107  233108  233110  233111  233112  233114  233116  233120  233122  233126  233128  233132  233138  233140  233146  233150  233152  233156  233162  233168  233170  233176  233180  233182  233188  233192  233198  233206  266669 

科目: 來源: 題型:選擇題

9.已知a、b、c、d∈R,“a+c>b+d”是“a>b,c>d”的( 。l件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目: 來源: 題型:填空題

8.已知A={x|x<-2},B={x|x<m},若B是A的子集,則實(shí)數(shù)m的取值范圍為m≤-2.

查看答案和解析>>

科目: 來源: 題型:填空題

7.已知橢圓E的中心為原點(diǎn)坐標(biāo),離心率為$\frac{{\sqrt{3}}}{2}$,E的右焦點(diǎn)與拋物線C:y2=12x的焦點(diǎn)重合,則橢圓E的方程為$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目: 來源: 題型:填空題

6.函數(shù)$f(x)=\left\{\begin{array}{l}(a-2)x-1,x≤1\\{a^{x-1}},x>1\end{array}\right.$若f(x)在(-∞,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍為(2,4].

查看答案和解析>>

科目: 來源: 題型:填空題

5.已知$f(n)=cos\frac{nπ}{3}$,則f(1)+f(2)+f(3)+…+f(2015)=-1.

查看答案和解析>>

科目: 來源: 題型:填空題

4.設(shè)關(guān)于x的方程x2-2(m-1)x+m-1=0的兩個(gè)根為α,β,且0<α<1<β<2,則實(shí)數(shù)m的取值范圍是2<m<$\frac{7}{3}$.

查看答案和解析>>

科目: 來源: 題型:解答題

3.設(shè)向量$\overrightarrow{m}$=(sinωx,cosωx),$\overrightarrow{n}$=(cosφ,sinφ),(x∈R,|φ|<$\frac{π}{2}$,ω>0),函數(shù)f(x)=$\overrightarrow{m}•\overrightarrow{n}$的圖象在y軸右側(cè)的第一個(gè)最高點(diǎn)(即函數(shù)取得最大值的一個(gè)點(diǎn))為P($\frac{π}{6},1$),在原點(diǎn)右側(cè)與x軸的第一個(gè)交點(diǎn)為Q($\frac{5π}{12},0$)
(1)求函數(shù)f(x)的解析式;
(2)在△ABC中,角A,B,C的對應(yīng)邊分別是a,b,c若f(C)=-1,$\overrightarrow{CA}•\overrightarrow{CB}=-\frac{3}{2}$,且a+b=2$\sqrt{3}$,求邊長c.

查看答案和解析>>

科目: 來源: 題型:解答題

2.根據(jù)市場調(diào)查,某商品在最近的40天內(nèi)的價(jià)格f(t)與時(shí)間t滿足關(guān)系f(t)=$\left\{\begin{array}{l}{t+20,0≤t<20,t∈N}\\{-t+42,20≤t≤40,t∈N}\end{array}\right.$,銷售量g(t)與時(shí)間t滿足關(guān)系g(t)=-t+50(0≤t≤40,t∈N),設(shè)商品的日銷售額為F(t)(銷售量與價(jià)格之積).求:
(1)商品的日銷售額F(t)的解析式;
(2)商品的日銷售額F(t)的最大值.

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=-1-\frac{{\sqrt{3}}}{2}t}\\{y=\sqrt{3}+\frac{1}{2}t}\end{array}}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為$ρ=4sin({θ-\frac{π}{6}})$.
(I)求圓C的直角坐標(biāo)方程;
(II)若P(x,y)是圓上的任意一點(diǎn),求$\sqrt{3}x+y$的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}的首項(xiàng)a1=2,Sn為其前n項(xiàng)和,且2S3=5S1+3S2
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log2an,cn=$\frac{1}{_{n}_{n+1}}$,記數(shù)列{cn}的前n項(xiàng)和Tn,求$\frac{{T}_{n}}{n+4}$的最大值.

查看答案和解析>>

同步練習(xí)冊答案