相關(guān)習(xí)題
 0  234699  234707  234713  234717  234723  234725  234729  234735  234737  234743  234749  234753  234755  234759  234765  234767  234773  234777  234779  234783  234785  234789  234791  234793  234794  234795  234797  234798  234799  234801  234803  234807  234809  234813  234815  234819  234825  234827  234833  234837  234839  234843  234849  234855  234857  234863  234867  234869  234875  234879  234885  234893  266669 

科目: 來源: 題型:填空題

10.已知四邊形ABCD,AB⊥AC,∠ACB=30°,∠ACD=15°,∠DBC=30°,且AB=1,則CD的長(zhǎng)為$\sqrt{6}-\sqrt{2}$.

查看答案和解析>>

科目: 來源: 題型:填空題

9.不等式$\frac{1}{x-1}$<-1的解集為(0,1).

查看答案和解析>>

科目: 來源: 題型:選擇題

8.拋擲兩枚質(zhì)地均勻的骰子,向上的點(diǎn)數(shù)之和為7的概率是( 。
A.$\frac{1}{9}$B.$\frac{1}{6}$C.$\frac{1}{18}$D.$\frac{1}{12}$

查看答案和解析>>

科目: 來源: 題型:選擇題

7.下列函數(shù)中,對(duì)定義域中的任一實(shí)數(shù)x均滿足f($\sqrt{2}x$)=2f(x)的是( 。
A.f(x)=log2xB.f(x)=x|x|C.f(x)=x2+1D.f(x)=2x

查看答案和解析>>

科目: 來源: 題型:選擇題

6.已知平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角為θ,$\overrightarrow{a}=(1,1)$,$\overrightarrow{a}+3\overrightarrow=(4,-2)$,則cosθ=( 。
A.0B.$\frac{3}{5}$C.$\frac{\sqrt{2}}{2}$D.1

查看答案和解析>>

科目: 來源: 題型:選擇題

5.已知△ABC為等邊三角形,則<$\overrightarrow{AB}$,$\overrightarrow{BC}$>=(  )
A.45°B.60°C.90°D.120°

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知向量|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2.
(Ⅰ)若$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{3}$,求|$\overrightarrow{a}+2\overrightarrow$|;
(Ⅱ)若(2$\overrightarrow{a}-b$)$•(3\overrightarrow{a}+\overrightarrow)$=3,求$\overrightarrow{a}$與$\overrightarrow$的夾角.

查看答案和解析>>

科目: 來源: 題型:填空題

3.圓O為△ABC的外接圓,半徑為2,若$\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AO}$,且|$\overrightarrow{OA}$=|$\overrightarrow{AC}$|,則$\overrightarrow{BA}•\overrightarrow{BO}$=6|

查看答案和解析>>

科目: 來源: 題型:填空題

2.一只螞蟻在一直角邊長(zhǎng)為1m的等腰直角三角形ABC(∠B=90°)內(nèi)隨機(jī)爬行,則螞蟻距A點(diǎn)不超過1m的概率為$\frac{π}{4}$.

查看答案和解析>>

科目: 來源: 題型:填空題

1.某產(chǎn)品的廣告費(fèi)用x(萬(wàn)元)與銷售額y(百萬(wàn)元)的統(tǒng)計(jì)數(shù)據(jù)如表:
 廣告費(fèi)用x(萬(wàn)元) 1 2 3 4 5 6 7
 銷售額y(百萬(wàn)元)2.9 3.3 3.6 4.4 4.8 5.2 5.9 
根據(jù)上表可得回歸方程$\widehat{y}$=$\widehatx+\widehat{a}$中的$\widehat{a}$為2.3,據(jù)此模型預(yù)報(bào)廣告費(fèi)用為12萬(wàn)元時(shí)銷售額為8.3百萬(wàn)元.

查看答案和解析>>

同步練習(xí)冊(cè)答案