相關(guān)習(xí)題
 0  235904  235912  235918  235922  235928  235930  235934  235940  235942  235948  235954  235958  235960  235964  235970  235972  235978  235982  235984  235988  235990  235994  235996  235998  235999  236000  236002  236003  236004  236006  236008  236012  236014  236018  236020  236024  236030  236032  236038  236042  236044  236048  236054  236060  236062  236068  236072  236074  236080  236084  236090  236098  266669 

科目: 來源: 題型:選擇題

8.已知函數(shù)f(x)定義在實數(shù)集R上的偶函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞減,若實數(shù)a滿足f(log2a)+f(log${\;}_{\frac{1}{2}}$a)≤2f(-1),則a的取值范圍是(  )
A.[2,+∞]∪(-∞,$\frac{1}{2}$]B.(0,$\frac{1}{2}$]∪[2,+∞)C.[$\frac{1}{2}$,2]D.(0,$\frac{1}{2}$]

查看答案和解析>>

科目: 來源: 題型:選擇題

7.設(shè)函數(shù)f(x)定義在實數(shù)集R上,滿足f(1+x)=f(1-x),當(dāng)x≥1時,f(x)=2x,則下列結(jié)論正確的是( 。
A.f($\frac{1}{3}$)<f(2)<f($\frac{1}{2}$)B.f($\frac{1}{2}$)<f(2)<f($\frac{1}{3}$)C.f($\frac{1}{2}$)<f($\frac{1}{3}$)<f(2)D.f(2)<f($\frac{1}{3}$)<f($\frac{1}{2}$)

查看答案和解析>>

科目: 來源: 題型:選擇題

6.已知三個函數(shù)f(x)=2x+x,g(x)=x-3,h(x)=log2x+x 的零點依次為a,b,c,則下列結(jié)論正確的是( 。
A.a<b<cB.a<c<bC.b<a<cD.c<a<b

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{7x+5}{x+1}$,數(shù)列{an}滿足:2an+1-2an+an+1an=0且an≠0.?dāng)?shù)列{bn}中,b1=f(0)且bn=f(an-1).
(1)求證:數(shù)列{$\frac{1}{{a}_{n}}$}是等差數(shù)列;
(2)求數(shù)列{anan+1}的前n項和Sn; 
(3)求數(shù)列{|bn|}的前n項和Tn

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知△ABC的三個角A,B,C的對邊分別為a,b,c,且A,B,C成等差數(shù)列,且b=$\sqrt{3}$.?dāng)?shù)列{an}是等比數(shù)列,且首項a1=$\frac{1}{2}$,公比為$\frac{sinA}{a}$.
(1)求數(shù)列{an}的通項公式;
(2)若bn=-$\frac{lo{g}_{2}{a}_{n}}{{a}_{n}}$,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目: 來源: 題型:填空題

3.已知函數(shù)$f(x)=\frac{1}{3}{x^3}+\frac{1-a}{2}{x^2}-ax-a,x∈R$,其中a>0,若函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個零點,則a的取值范圍是(0,$\frac{1}{3}$).

查看答案和解析>>

科目: 來源: 題型:填空題

2.給出下列六個命題:
①兩個向量相等,則它們的起點相同,終點相同;
②若|$\overrightarrow{a}$|=|$\overrightarrow$|,則$\overrightarrow{a}$=$\overrightarrow$;
③若$\overrightarrow{AB}$=$\overrightarrow{DC}$,則A,B,C,D四點構(gòu)成平行四邊形;
④在平行四邊形ABCD中,一定有$\overrightarrow{AB}$=$\overrightarrow{DC}$;
⑤若$\overrightarrow{m}$=$\overrightarrow{n}$,$\overrightarrow{n}$=$\overrightarrow{p}$,則$\overrightarrow{m}$=$\overrightarrow{p}$;
⑥若向$\overrightarrow{a}$∥$\overrightarrow$,$\overrightarrow$∥$\overrightarrow{c}$,則$\overrightarrow{a}$∥$\overrightarrow{c}$.
其中錯誤的命題有①②③⑥.(填序號)

查看答案和解析>>

科目: 來源: 題型:選擇題

1.給出如下四個命題:
①若“p∧q”為假命題,則p,q均為假命題;
②命題“若a>b,則2a>2b-1”的否命題為“若a≤b,則2a≤2b-1”;
③命題“任意x∈R,x2+1≥0”的否定是“存在x0∈R,x0+1<0”;
④函數(shù)f(x)在x=x0處導(dǎo)數(shù)存在,若p:f′(x0)=0;q:x=x0是f(x)的極值點,則p是q的必要條件,但不是 q的充分條件;
其中真命題的個數(shù)是( 。
A..1B..2C..3D..4

查看答案和解析>>

科目: 來源: 題型:選擇題

20.在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,三邊a,b,c成等差數(shù)列,且$B=\frac{π}{6}$,則(cosA-cosC)2的值為(  )
A.$1+\sqrt{3}$B.$\sqrt{2}$C.$2+\sqrt{2}$D.0

查看答案和解析>>

科目: 來源: 題型:選擇題

19.x,y滿足線性約束條件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-2y-2≤0}\\{2x-y+2≥0}\end{array}\right.$,若z=y+ax取得最大值的最優(yōu)解不唯一,則a( 。
A.-2或1B.-2或-$\frac{1}{2}$C.-$\frac{1}{2}$或-1D.-$\frac{1}{2}$或1

查看答案和解析>>

同步練習(xí)冊答案