相關(guān)習(xí)題
 0  236673  236681  236687  236691  236697  236699  236703  236709  236711  236717  236723  236727  236729  236733  236739  236741  236747  236751  236753  236757  236759  236763  236765  236767  236768  236769  236771  236772  236773  236775  236777  236781  236783  236787  236789  236793  236799  236801  236807  236811  236813  236817  236823  236829  236831  236837  236841  236843  236849  236853  236859  236867  266669 

科目: 來(lái)源: 題型:填空題

5.將正整數(shù)12分解成兩個(gè)正整數(shù)的乘積有1×12,2×6,3×4三種,其中3×4是這三種分解中兩數(shù)差的絕對(duì)值最小的,我們稱3×4為12的最佳分解.當(dāng)p×q(p≤q且pq∈N*,)是正整數(shù)n的最佳分解時(shí),我們定義函數(shù)f(n)=q-p,例如f(12)=4-3=1.?dāng)?shù)列{f(3n)}的前100項(xiàng)和為350-1.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

4.對(duì)于函數(shù)g(x)=$\left\{\begin{array}{l}{sinπx,x∈(2,+∞)}\\{2g(x+2),x∈(0,2]}\end{array}\right.$,若關(guān)于x的方程g(x)=n(n>0)有且只有兩個(gè)不同的實(shí)根x1,x2,則x1+x2=1.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

3.在三棱柱ABCA1B1C1中,側(cè)面ABB1A1為矩形,AB=3,AA1=3$\sqrt{2}$,D為AA1的中點(diǎn),BD與AB1交于點(diǎn)O,CO⊥側(cè)面ABB1A1
(Ⅰ)證明:BC⊥AB1;
(Ⅱ)若OC=OA,求二面角A1-AC-B的余弦值.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

2.設(shè)函數(shù)f'(x)是函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(0)=1,且$f(x)=\frac{1}{3}f'(x)-1$,則4f(x)>f'(x)的解集為( 。
A.$(\frac{ln4}{3},+∞)$B.$(\frac{ln2}{3},+∞)$C.$(\frac{{\sqrt{3}}}{2},+∞)$D.$(\frac{{\sqrt{e}}}{3},+∞)$

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

1.如圖甲所示,BO是梯形ABCD的高,∠BAD=45°,OB=BC=1,AD=3BC,現(xiàn)將等腰梯形ABCD沿OB折起如圖乙所示的四棱錐P-OBCD,且PC=$\sqrt{3}$,點(diǎn)E是線段OP的中點(diǎn).

(1)證明:OP⊥CD;
(2)在圖中作出平面CDE與PB交點(diǎn)Q,并求線段QD的長(zhǎng)度.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

20.若單位向量$\overrightarrow{e_1},\overrightarrow{e_2}$滿足$|2\overrightarrow{e_1}+\overrightarrow{e_2}|=|\overrightarrow{e_1}|$,則$\overrightarrow{e_1}$在$\overrightarrow{e_2}$方向上投影為-1.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

19.如圖,在邊長(zhǎng)為4的正方形ABCD中,將△AED,△DCF分別沿DE,DF折起,使A,C兩點(diǎn)重合于點(diǎn)A′.
(Ⅰ)點(diǎn)E是AB的中點(diǎn),點(diǎn)F是BC的中點(diǎn),求證:平面A′ED⊥平面A′FD;
(Ⅱ)當(dāng)BE=BF=$\frac{1}{4}$BC,求三棱錐A′-EFD的體積.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

18.已知圓O的半徑為2,它的內(nèi)接三角形ABC滿足c2-a2=4($\sqrt{3}$c-b)sinB,其中a,b,c分別為角A,B,C的對(duì)邊.
(Ⅰ)求角A;
(Ⅱ)求三角形ABC面積S的最大值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

17.已知$\overrightarrow{a}$=(3,-1),$\overrightarrow{a}$•$\overrightarrow$=-5,$\overrightarrow{c}$=x$\overrightarrow{a}$+(1-x)$\overrightarrow$.
(Ⅰ)若$\overrightarrow{a}$⊥$\overrightarrow{c}$,求實(shí)數(shù)x的值;
(Ⅱ)若|$\overrightarrow$|=$\sqrt{5}$,求|$\overrightarrow{c}$|的最小值.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

16.已知f(x)=lnx-x+1+a,g(x)=x2ex(e為自然對(duì)數(shù)的底數(shù)),若對(duì)任意的x1∈[$\frac{1}{e}$,1],總存在x2∈[0,1],使得f(x1)=g(x2)成立,則實(shí)數(shù)a的取值范圍是$\frac{1}{e}$≤a≤e.

查看答案和解析>>

同步練習(xí)冊(cè)答案