相關(guān)習(xí)題
 0  238695  238703  238709  238713  238719  238721  238725  238731  238733  238739  238745  238749  238751  238755  238761  238763  238769  238773  238775  238779  238781  238785  238787  238789  238790  238791  238793  238794  238795  238797  238799  238803  238805  238809  238811  238815  238821  238823  238829  238833  238835  238839  238845  238851  238853  238859  238863  238865  238871  238875  238881  238889  266669 

科目: 來源: 題型:選擇題

5.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a4=7且4Sn=n(an+an+1),則S10等于( 。
A.90B.100C.110D.120

查看答案和解析>>

科目: 來源: 題型:選擇題

4.P為橢圓$\frac{x^2}{{2{b^2}}}+\frac{y^2}{b^2}=1({b>0})$上異于左右頂點(diǎn)A1、A2的任意一點(diǎn),則直線PA1與PA2的斜率之積為定值$-\frac{1}{2}$.將這個(gè)結(jié)論類比到雙曲線,得出的結(jié)論為:P為雙曲線$\frac{x^2}{{2{b^2}}}-\frac{y^2}{b^2}=1({b>0})$上異于左右頂點(diǎn)A1、A2的任意一點(diǎn),則( 。
A.直線PA1與PA2的斜率之和為定值$\frac{1}{2}$B.直線PA1與PA2的斜率之和為定值2
C.直線PA1與PA2的斜率之積為定值$\frac{1}{2}$D.直線PA1與PA2的斜率之積為定值2

查看答案和解析>>

科目: 來源: 題型:填空題

3.已知數(shù)列{an}的通項(xiàng)公式an=($\frac{10}{11}$)n(3n+13),則使得an取最大值時(shí)的n=6.

查看答案和解析>>

科目: 來源: 題型:解答題

2.在△ABC中,角A,B,C的對邊分別為a,b,c,且a=2b,又sinA,sinC,sinB成等差數(shù)列.
(Ⅰ)求cos(B+C)的值;
(Ⅱ)若S△ABC=$\frac{3\sqrt{15}}{3}$,求c的值.

查看答案和解析>>

科目: 來源: 題型:填空題

1.若定義在R上的函數(shù)f(x)滿足f(x+2)=-f(x),f(x+1)是奇函數(shù),現(xiàn)給出下列4個(gè)論斷:
①f(x)是周期為4的周期函數(shù);
②f(x)的圖象關(guān)于點(diǎn)(1,0)對稱;
③f(x)是偶函數(shù);
④f(x)的圖象經(jīng)過點(diǎn)(-2,0)
其中正確論斷的序號是①②③(請?zhí)钌纤姓_論斷的序號).

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知函數(shù)f(x)=x2-ax(a≠0),g(x)=lnx,f(x)圖象與x軸交于點(diǎn)M(M異于原點(diǎn)),f(x)在M處的切線為l1,g(x-1)圖象與x軸交于點(diǎn)N且在該點(diǎn)處的切線為l2,并且l1與l2平行.
(Ⅰ)求f(2)的值;
(Ⅱ)已知實(shí)數(shù)t∈R,求函數(shù)y=f[xg(x)+t],x∈[1,e]的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知圓方程為x2+y2-2ax-4ay+4a2+t=0(a≠0).
(1)若t=$\frac{1}{2}$a2,確定無論a為何值均與圓相切的直線的方程;
(2)若t=a2-4,確定無論a為何值被圓截得的弦長為1的直線的方程.

查看答案和解析>>

科目: 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=sin(2x+φ)(-π<φ<0).y=f(x)圖象的一條對稱軸是直線$x=\frac{π}{8}$.
(1)求函數(shù)f(x)的解析式;
(2)為了得到$y=2sin(2x-\frac{π}{6})$的圖象,由f(x)怎么樣變換得到的?

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知f(α)=$\frac{{sin(π-α)cos(2π-α)sin(-α+\frac{3π}{2})}}{tan(-α-π)sin(-π-α)cos(-π+α)}$;
(1)化簡f(α);
(2)若α的終邊在第二象限,$sinα=\frac{3}{5}$,求f(α)的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.已知$\vec a=(2,3),\vec b=(x,-6)$,若$2\vec a∥\vec b$,則x的值為( 。
A.9B.-9C.4D.-4

查看答案和解析>>

同步練習(xí)冊答案