相關(guān)習(xí)題
 0  240206  240214  240220  240224  240230  240232  240236  240242  240244  240250  240256  240260  240262  240266  240272  240274  240280  240284  240286  240290  240292  240296  240298  240300  240301  240302  240304  240305  240306  240308  240310  240314  240316  240320  240322  240326  240332  240334  240340  240344  240346  240350  240356  240362  240364  240370  240374  240376  240382  240386  240392  240400  266669 

科目: 來源: 題型:選擇題

6.能夠使sinx≥0和cotx≥0同時成立的x的集合是( 。
A.{x|0<x≤$\frac{π}{2}$}B.{x|2kπ≤x≤2kπ+$\frac{π}{2}$,k∈Z}
C.{x|2kπ<x≤2kπ+$\frac{π}{2}$,k∈Z}D.{x|kπ<x≤kπ+$\frac{π}{2}$,k∈Z}

查看答案和解析>>

科目: 來源: 題型:選擇題

5.過曲線C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點F作曲線C2:x2+y2=a2的切線,設(shè)切點為M,延長FM交曲線C3:y2=2px(p>0)于點N,其中曲線C1與C3有一個共同的焦點,若OF=ON(O為坐標原點),則曲線C1的離心率為( 。
A.$\frac{\sqrt{5}+1}{2}$B.$\frac{\sqrt{3}+1}{2}$C.$\sqrt{5}$+1D.$\sqrt{3}$+1

查看答案和解析>>

科目: 來源: 題型:解答題

4.一張考卷中有5道選擇題,每道有4個選項,其中只有一個正確的,某學(xué)生全憑猜測答這到題.
(1)求恰好猜對3道題的概率;
(2)求一道題也沒有猜對的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

3.若f(x)=$\sqrt{k{x}^{2}-6kx+k+8}$的定義域是R,求k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知向量$\overrightarrow{a}$=(cosωx,sinωx),$\overrightarrow$=(cosωx,$\sqrt{3}$cosωx),其中0<ω<2,函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$-$\frac{1}{2}$,其中圖象的一條對稱軸為x=$\frac{π}{6}$.
(1)求函數(shù)f(x)的表達式及單調(diào)遞增區(qū)間;
(2)將函數(shù)y=f(x)的圖象向左平移$\frac{2π}{3}$個單位,再將所得圖象上各點的橫坐標伸長為原來的4倍,縱坐標不變,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)的對稱中心.

查看答案和解析>>

科目: 來源: 題型:解答題

1.求下列函數(shù)的定義域、值域及單調(diào)區(qū)間.
(1)f(x)=3${\;}^{\sqrt{{x}^{2}-5x+4}}$;
(2)f(x)=4x-2x+1-5.

查看答案和解析>>

科目: 來源: 題型:解答題

20.如圖,已知四棱柱ABCD-A1B1C1D1的底面是菱形,側(cè)棱AA1⊥底面ABCD,M是AC的中點,∠BAD=120°,AA1=AB.
(1)證明:MD1∥平面A1BC1;
(2)求直線MA1與平面A1BC1所成的角的正弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知四棱錐A-BCDE,其中AB=BC=AC=BE=1,CD⊥面ABC,BE∥CD,F(xiàn)為AD的中點.
(1)求證:EF∥面ABC;
(2)求證:面ADE⊥面ACD;
(3)求四棱錐A-BCDE的體積.

查看答案和解析>>

科目: 來源: 題型:解答題

18.如圖所示,在四棱錐P-ABCD中,底面是邊長為1的正方形,側(cè)棱PD=1,PA=PC=$\sqrt{2}$.
(1)求證:PD⊥平面ABCD;
(2)求證:平面PAC⊥平面PBD.

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知方程(m2-2m-3)x+(2m2+m-1)y+6-2m=0(m∈R).
(1)當(dāng)m為何實數(shù)時,方程表示的直線斜率不存在?求出這時的直線方程;
(2)已知方程表示的直線l在x軸上的截距為-3,求實數(shù)m的值;
(3)若方程表示的直線l的傾斜角是45°,求實數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊答案