相關(guān)習(xí)題
 0  241161  241169  241175  241179  241185  241187  241191  241197  241199  241205  241211  241215  241217  241221  241227  241229  241235  241239  241241  241245  241247  241251  241253  241255  241256  241257  241259  241260  241261  241263  241265  241269  241271  241275  241277  241281  241287  241289  241295  241299  241301  241305  241311  241317  241319  241325  241329  241331  241337  241341  241347  241355  266669 

科目: 來源: 題型:填空題

1.已知圓C:x2+(y-2)2=1,D為x軸正半軸上的動(dòng)點(diǎn).若圓C與圓D相外切,且它們的內(nèi)公切線恰好經(jīng)過坐標(biāo)原點(diǎn),則圓D的方程是(x±2$\sqrt{3}$)2+y2=9.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知曲線${C_1}:y=cosx,{C_2}:y=sin(2x+\frac{2π}{3})$,則下面結(jié)論正確的是( 。
A.把C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度,得到曲線C2
B.把C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移 $\frac{π}{12}$個(gè)單位長(zhǎng)度,得到曲線C2
C.把C1上各點(diǎn)的橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍,縱坐標(biāo)不變,再把得到的曲線向右平移 $\frac{π}{6}$個(gè)單位長(zhǎng)度,得到曲線C2
D.把C1上各點(diǎn)的橫坐標(biāo)縮短到原來的 $\frac{1}{2}$倍,縱坐標(biāo)不變,再把得到的曲線向左平移 $\frac{π}{12}$個(gè)單位長(zhǎng)度,得到曲線C2

查看答案和解析>>

科目: 來源: 題型:解答題

19.在等差數(shù)列{an}中,a3+a4=12,公差d=2,記數(shù)列{a2n-1}的前n項(xiàng)和為Sn
(1)求Sn;
(2)設(shè)數(shù)列{$\frac{n}{{a}_{n+1}{S}_{n}}$}的前n項(xiàng)和為Tn,若a2,a5,am成等比數(shù)列,求Tm

查看答案和解析>>

科目: 來源: 題型:選擇題

18.直線y=x+a與拋物線y2=5ax(a>0)相交于A,B兩點(diǎn),C(0,2a),給出下列4個(gè)命題:
p1:△ABC的重心在定直線7x-3y=0上,p2:|AB|$\sqrt{3-a}$的最大值為2$\sqrt{10}$;
p3:△ABC的重心在定直線 3x-7y=0上;p4:|AB|$\sqrt{3-a}$的最大值為2$\sqrt{5}$.
其中的真命題為( 。
A.p1,p2B.p1,p4C.p2,p3D.p3,p4

查看答案和解析>>

科目: 來源: 題型:解答題

17.?dāng)?shù)列{an}滿足a1=1,an+1=$\frac{{2}^{n+1}•{a}_{n}}{{a}_{n}+{2}^{n}}$(n∈N+).
(1)證明:數(shù)列{$\frac{{2}^{n}}{{a}_{n}}$}是等差數(shù)列;
(2)設(shè)bn=$\frac{2n-1}{(n+1){a}_{n}}$,數(shù)列{bn}的前n項(xiàng)和為Tn,對(duì)任意的n∈N+,t∈[1,2],at2-2t+a2+$\frac{1}{2}$≤Tn恒成立,求正數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.已知向量$\overrightarrow{AB}$,$\overrightarrow{AC}$,$\overrightarrow{AD}$在正方形網(wǎng)格中的位置如圖所示,若$\overrightarrow{AC}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AD}$,則λμ=( 。
A.-3B.3C.-4D.4

查看答案和解析>>

科目: 來源: 題型:選擇題

15.下列各式中,值為-$\frac{\sqrt{3}}{2}$的是(  )
A.2sin15°cos15°B.2sin215°-1C.cos215°-sin215°D.cos215°+sin215°

查看答案和解析>>

科目: 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=3x2-2(a+b)x+ab,函數(shù)g(x)=(x-a)(x-b) a,b∈R
(1)當(dāng)b=1時(shí),解關(guān)于x的不等式:f(x)>(a+3)x2-(3a+4)x+a+2;
(2)若b>a>0且a+b<2$\sqrt{3}$,已知函數(shù)f(x)有兩個(gè)零點(diǎn)s和t,若點(diǎn)A(s,s•g(s)),B(t,t•g(t)),其中O是坐標(biāo)原點(diǎn),證明:$\overrightarrow{OA}$與$\overrightarrow{OB}$不可能垂直.

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知數(shù)列{an}滿足:$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$=$\frac{2}{{a}_{n}×{a}_{n+1}}$,數(shù)列{bn}滿足:Sn=(2n-1)bn,其中 Sn為數(shù)列{bn}的前n項(xiàng)和,且a1=b1=1.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)求數(shù)列{an•bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目: 來源: 題型:解答題

12.如圖,在△ABC中,C=$\frac{π}{4}$,角B的平分線BD交AC于點(diǎn)D,設(shè)∠CBD=θ,其中θ是直線x-2y+3=0的傾斜角.
(1)求sinA;
(2)若$\overrightarrow{CA}$•$\overrightarrow{CB}$=28,求AB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案