1.已知圓C:x2+(y-2)2=1,D為x軸正半軸上的動(dòng)點(diǎn).若圓C與圓D相外切,且它們的內(nèi)公切線恰好經(jīng)過坐標(biāo)原點(diǎn),則圓D的方程是(x±2$\sqrt{3}$)2+y2=9.

分析 利用兩個(gè)圓相外切的性質(zhì),求得圓D的圓心橫坐標(biāo)及半徑,可得圓D的標(biāo)準(zhǔn)方程.

解答 解:圓C:x2+(y-2)2=1得圓心C( 0,2)、半徑等于1,
設(shè)兩個(gè)圓的公共切點(diǎn)為M,則由兩圓相外切的性質(zhì)可得OM=$\sqrt{{OC}^{2}-1}$=$\sqrt{3}$.
設(shè)圓D的半徑為r,點(diǎn)D(a,0),在Rt△OMD中,由勾股定理可得OM2+r2=OD2,即3+r2=a2  ①.
再根據(jù)圓C與圓D相外切,可得CD=$\sqrt{{a}^{2}{+2}^{2}}$=1+r  ②.
由①②求得r=3,a=±2$\sqrt{3}$,∴圓D的方程是 (x±2$\sqrt{3}$)2+y2=9,
故答案為:(x±2$\sqrt{3}$)2+y2=9.

點(diǎn)評(píng) 本題主要考查兩個(gè)圓相外切的性質(zhì),用待定系數(shù)法求圓的標(biāo)準(zhǔn)方程,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2,過點(diǎn)(1,$\frac{3}{2}$),過其右焦點(diǎn)F作直線l交C于A、B兩點(diǎn).
(Ⅰ)求橢圓方程;
(Ⅱ)過A作x軸的垂線交C于另一點(diǎn)Q(Q不與A、B重合).
(i)設(shè)G為△ABO的外接圓的圓心,證明:$\frac{|AB|}{|GF|}$為定值;
(ii)證明:直線BQ過定點(diǎn)P.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知一次函數(shù)f(x)=ax-2.
(1)當(dāng)a=3時(shí),解不等式|f(x)|<4;
(2)若不等式|f(x)|≤3對(duì)任意x∈[0,1]恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且sin2A+sin2B=sin2C-$\sqrt{2}$sinA•sinB,sinA=$\frac{\sqrt{5}}{5}$,若c-a=5-$\sqrt{10}$,則b=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知向量$\overrightarrow{AB}$,$\overrightarrow{AC}$,$\overrightarrow{AD}$在正方形網(wǎng)格中的位置如圖所示,若$\overrightarrow{AC}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AD}$,則λμ=(  )
A.-3B.3C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知數(shù)列{an}中,a1=4,n(an-an-1-2)=an-1+2n2,則$\frac{1}{{a}_{12}}$+$\frac{1}{{a}_{13}}$+$\frac{1}{{a}_{14}}$+…+$\frac{1}{{a}_{23}}$=(  )
A.$\frac{1}{48}$B.$\frac{1}{24}$C.$\frac{23}{48}$D.$\frac{11}{24}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.不等式x2$-\frac{1}{6}$x$-\frac{1}{6}$<0的解集為( 。
A.(-$\frac{1}{3}$,$\frac{1}{2}$)B.(-∞,-$\frac{1}{3}$)∪($\frac{1}{2}$,+∞)C.(-$\frac{1}{2}$,$\frac{1}{3}$)D.(-∞,$-\frac{1}{2}$)∪($\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,對(duì)任意的n∈N+,都有Sn=2-an,數(shù)列{bn}滿足b1=2a1,bn=$\frac{_{n-1}}{1+_{n-1}}$(n≥2,n∈N+).
(1)求證:數(shù)列{an}是等比數(shù)列,并求{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}的通項(xiàng)公式
(3)求數(shù)列{$\frac{1}{{a}_{n+2}_{n}}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知甲船在燈塔北偏東80°處,且與燈塔相距2km,乙船在燈塔北偏西40°處,兩船相距3km,那么乙船與燈塔的距離為$\sqrt{6}$-1km.

查看答案和解析>>

同步練習(xí)冊(cè)答案