相關(guān)習(xí)題
 0  250778  250786  250792  250796  250802  250804  250808  250814  250816  250822  250828  250832  250834  250838  250844  250846  250852  250856  250858  250862  250864  250868  250870  250872  250873  250874  250876  250877  250878  250880  250882  250886  250888  250892  250894  250898  250904  250906  250912  250916  250918  250922  250928  250934  250936  250942  250946  250948  250954  250958  250964  250972  266669 

科目: 來(lái)源: 題型:選擇題

1.下列有關(guān)命題的說(shuō)法正確的是(  )
A.命題“若x=y,則sinx=siny”的逆否命題為真命題
B.若p∨q為真命題,則p、q均為真命題
C.命題“存在x∈R,使得x2+x+1<0”的否定是:“對(duì)任意x∈R,均有x2+x+1<0”
D.命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

20.一名學(xué)生每天騎車(chē)上學(xué),從他家到學(xué)校的途中有6個(gè)交通崗,假設(shè)他在各個(gè)交通崗遇到紅燈的事件是相互獨(dú)立的,并且概率都是$\frac{1}{3}$.設(shè)X為這名學(xué)生在途中遇到紅燈的次數(shù),求X的分布列.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

19.已知f(x)=lnx,g(x)=$\frac{1}{2}$ax2-2x.
(1)若y=f(x)-g(x)在區(qū)間($\frac{1}{3}$,1)上單調(diào)遞減,求a的范圍.
(2)若函數(shù)y=f(x)-g(x)在區(qū)間($\frac{1}{3}$,1)上存在遞減區(qū)間,求a的范圍.
(3)若y=f(x)-g(x)的單調(diào)遞增區(qū)間是(0,$\frac{1}{3}$),求a的范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

18.求函數(shù)y=8+$\frac{2}{x}$+$\frac{1}{{x}^{2}}$的單調(diào)區(qū)間.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

17.已知函數(shù)y=$\sqrt{3}$sin4x+cos4x.
(1)求它的周期,最大值,最小值;
(2)求它的單調(diào)遞增區(qū)間;
(3)它可以由y=sinx的圖象經(jīng)過(guò)怎樣的變化得到?

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{{2}^{x}-a}{{2}^{x}+1}$是奇函數(shù).
(Ⅰ)求a的值;
(Ⅱ)判斷f(x)在(-∞,+∞)上的單調(diào)性,并加以證明;
(Ⅲ)對(duì)于任意不小于3的自然數(shù)n,都有f(f(n))>f($\frac{n}{n+1}$).

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

15.在R上定義運(yùn)算?:x?y=x(1-y),若對(duì)任意x>2,不等式(x-2)?x<a+2恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.$(-\frac{7}{4},+∞)$B.[-2,+∞)C.(-∞,-2]D.$[-2,-\frac{7}{4})$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

14.已知函數(shù)f(x)為偶函數(shù),它在[0,+∞)上為減函數(shù),若f(lgx)<f(1),則x的取值范圍是( 。
A.($\frac{1}{10}$,1)B.(0,1)∪(1,+∞)C.($\frac{1}{10}$,10)D.$(0,\frac{1}{10})∪(10,+∞)$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

13.已知O是三角形ABC內(nèi)部一點(diǎn),滿足$\overrightarrow{OA}$+2$\overrightarrow{OB}$=4$\overrightarrow{CO}$,則$\frac{{S}_{△AOB}}{{S}_{△AOC}}$=( 。
A.$\frac{3}{2}$B.5C.2D.$\frac{5}{3}$

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

12.如圖所示,在△AOB中,已知∠AOB=60°,OA=2,OB=5,在線段OB上任取一點(diǎn)C,則△AOC為鈍角三角形的概率為$\frac{2}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案