相關(guān)習題
 0  251721  251729  251735  251739  251745  251747  251751  251757  251759  251765  251771  251775  251777  251781  251787  251789  251795  251799  251801  251805  251807  251811  251813  251815  251816  251817  251819  251820  251821  251823  251825  251829  251831  251835  251837  251841  251847  251849  251855  251859  251861  251865  251871  251877  251879  251885  251889  251891  251897  251901  251907  251915  266669 

科目: 來源: 題型:填空題

5.直線y=x+m與圓x2+y2=4交于不同的兩點M、N,且$|\overrightarrow{MN}|≥\sqrt{3}|\overrightarrow{OM}+\overrightarrow{ON|}$,其中O為坐標原點,則實數(shù)m的取值范圍是$[-\sqrt{2},\sqrt{2}]$.

查看答案和解析>>

科目: 來源: 題型:解答題

4.圓C滿足:①圓心C在射線y=2x(x>0)上;    
②與x軸相切;  
③被直線y=x+2截得的線段長為$\sqrt{14}$
(1)求圓C的方程;
(2)過直線x+y+3=0上一點P作圓C的切線,設(shè)切點為E、F,求四邊形PECF面積的最小值,并求此時$\overrightarrow{PE}•\overrightarrow{PF}$的值.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知函數(shù)f(x)=x|x+m|-4,m∈R
(1)若g(x)=f(x)+4為奇函數(shù),求實數(shù)m的值;
(2)當m=-3時,求函數(shù)f(x)在x∈[2,4]上的值域;
(3)若f(x)<0對x∈(0,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

2.在△ABC中,角A、B、C的對邊分別是a、b、c,若$b-\frac{1}{2}c=acosC$
(1)求角A;
(2)若4(b+c)=3bc,$a=2\sqrt{3}$,求△ABC的面積S.

查看答案和解析>>

科目: 來源: 題型:解答題

1.甲、乙兩位學生參加數(shù)學競賽培訓,他們在培訓期間8次模擬考試的成績?nèi)缦拢?br />甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
(1)畫出甲、乙兩位學生成績的莖葉圖,指出學生甲成績的中位數(shù)和學生乙成績的眾數(shù);
(2)求學生乙成績的平均數(shù)和方差;
(3)從甲同學超過80分的6個成績中任取兩個,求這兩個成績中至少有一個超過90分的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知函數(shù)f(x)=x-|x-1|,$g(x)={(\frac{1}{2})^{x-1}}$.
(Ⅰ) 在所給坐標系中同時畫出函數(shù)y=f(x)和y=g(x)的圖象;
(Ⅱ) 根據(jù)(I)中圖象寫出不等式g(x)≥f(x)的解集.

查看答案和解析>>

科目: 來源: 題型:解答題

19.(1)用分數(shù)指數(shù)冪表示下式$\sqrt{\frac{a^2}\sqrt{\frac{b^3}{a}\sqrt{\frac{a}{b^3}}}}$(a>0,b>0)
(2)計算:$lg12.5-lg\frac{5}{8}+lg\frac{1}{2}$.

查看答案和解析>>

科目: 來源: 題型:填空題

18.若奇函數(shù)f(x)與偶函數(shù)g(x)滿足f(x)+g(x)=2x,則函數(shù)g(x)的最小值是1.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知函數(shù)y=f(x)在區(qū)間(0,3)上為增函數(shù),y=g(x)在區(qū)間(2,5)上為減函數(shù),則函數(shù)y=f(g(x))在區(qū)間(2,3)上為( 。
A.增函數(shù)B.減函數(shù)C.先增后減D.單調(diào)性不能確定

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知拋物線y2=4x,作斜率為1的直線l交拋物線于A,B兩點,交x軸于點M,弦AB的中點為P
(1)若M(2,0),求以線段AB為直徑的圓的方程;
(2)設(shè)M(m,0),若點P滿足$\frac{1}{{|{AM}|}}+\frac{1}{{|{BM}|}}=\frac{1}{{|{PM}|}}$,求m的值.

查看答案和解析>>

同步練習冊答案