分析 由題意,以-x代替x,代入f(x)+g(x)=2x得到一個關于f(-x)和g(-x)方程,利用奇(偶)函數(shù)的定義把此方程轉化為關于f(x)和g(x)另外一個方程,再聯(lián)立已知方程用消元法求出g(x),利用基本不等式,即可求出函數(shù)g(x)的最小值.
解答 解:由題意知,f(x)+g(x)=2x ①,
令以-x代替x,代入得,f(-x)+g(-x)=2-x ②,
∵函數(shù)f(x),g(x)分別是R上的奇函數(shù),偶函數(shù),
∴f(-x)=-f(x),g(x)=g(-x)代入②得,
-f(x)+g(x)=2-x;③,
聯(lián)立①③消去f(x),解得g(x)=$\frac{1}{2}$(2x+2-x),
∴g(x)=$\frac{1}{2}$(2x+2-x)≥1
故答案為:1.
點評 本題考查了用函數(shù)奇偶性來求函數(shù)的解析式,主要利用定義列出另外一個方程,利用方程思想求出函數(shù)的解析式.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | A?B | B. | B?A | C. | A∩B=Φ | D. | 以上都不正確 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 關于點($\frac{5π}{12}$,0)對稱 | B. | 關于點($\frac{π}{2}$,0)對稱 | ||
C. | 關于直線x=$\frac{5π}{12}$對稱 | D. | 關于直線x=$\frac{π}{12}$對稱 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com