相關(guān)習(xí)題
 0  252513  252521  252527  252531  252537  252539  252543  252549  252551  252557  252563  252567  252569  252573  252579  252581  252587  252591  252593  252597  252599  252603  252605  252607  252608  252609  252611  252612  252613  252615  252617  252621  252623  252627  252629  252633  252639  252641  252647  252651  252653  252657  252663  252669  252671  252677  252681  252683  252689  252693  252699  252707  266669 

科目: 來源: 題型:填空題

10.若3π<x<4π,則$\sqrt{\frac{1+cosx}{2}}$+$\sqrt{\frac{1-cosx}{2}}$=$\sqrt{2}$cos($\frac{x}{2}$+$\frac{π}{4}$).

查看答案和解析>>

科目: 來源: 題型:解答題

9.解答:
(1)$(3\frac{3}{8})^{\frac{1}{3}}$×${9}^{\frac{1}{2}}$+2lg5+lg4-lne+lg100
(2)已知${a}^{\frac{1}{2}}+{a}^{-\frac{1}{2}}$=3,求a+a-1,a2+a-2

查看答案和解析>>

科目: 來源: 題型:填空題

8.若定點(diǎn)A(a,2)在圓x2+y2-2ax-3y+a2+a=0的外部,則a的取值范圍是$(2,\frac{9}{4})$.

查看答案和解析>>

科目: 來源: 題型:填空題

7.y=$\sqrt{sinx}$的定義域?yàn)閧x|2kπ≤x≤π+2kπ,k∈Z},單調(diào)遞增區(qū)間為[2kπ,$\frac{π}{2}$+2kπ],k∈Z.

查看答案和解析>>

科目: 來源: 題型:選擇題

6.已知f(x)=ax(a>0且a≠1),若f(-3)>f(-π)則a的取值范圍是(  )
A.a>0B.a>1C.a<0D.0<a<1

查看答案和解析>>

科目: 來源: 題型:解答題

5.己知f(1+x)=f(1-x),且f(-x)+f(x)=0,當(dāng)x∈[1,3]時(shí),f(x)=-x+2:
(1)求x∈[-1,1]時(shí),f(x)的解析式;(2)求證:x=-1為f(x)的一條對(duì)稱軸;(3)求不等式f(x)≥$\frac{1}{2}$的解集.

查看答案和解析>>

科目: 來源: 題型:解答題

4.先化簡(jiǎn),再求值:$\frac{2x}{x+1}$-$\frac{2x+6}{{x}^{2}-1}$÷$\frac{x+3}{{x}^{2}-2x+1}$,其中x=$\sqrt{2}$-1.

查看答案和解析>>

科目: 來源: 題型:填空題

3.已知f(x)=x+$\frac{1}{x}$-2(x>0),則f(x)的最小值為0.

查看答案和解析>>

科目: 來源: 題型:解答題

2.如圖,一次函數(shù)y=-$\frac{3}{4}$x+6的圖象分別與x軸、y軸交于點(diǎn)A,B,點(diǎn)P從點(diǎn)B出發(fā),沿BA以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)A,當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.
(1)點(diǎn)P在運(yùn)動(dòng)的過程中,若某一時(shí)刻,△OPA的面積為12,求此時(shí)P點(diǎn)的坐標(biāo);
(2)在(1)的基礎(chǔ)上,設(shè)點(diǎn)Q為y軸上一動(dòng)點(diǎn),當(dāng)PQ+BQ的值最小時(shí),求Q點(diǎn)坐標(biāo);
(3)在整個(gè)運(yùn)動(dòng)過程中,當(dāng)t為何值時(shí),△AOP為等腰三角形?

查看答案和解析>>

科目: 來源: 題型:解答題

1.定義在D上的函數(shù)f(x),如果滿足:對(duì)任意x∈D,存在常數(shù)M≥0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的一個(gè)上界,已知函數(shù)f(x)=1+a($\frac{1}{2}$)x+($\frac{1}{4}$)x,g(x)=log${\;}_{\frac{1}{2}}$$\frac{1+x}{x-1}$.
(1)求函數(shù)g(x)在區(qū)間[$\frac{5}{3}$,3]上的所有上界構(gòu)成的集合;
(2)若函數(shù)f(x)在[0,+∞)上是以3為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案