相關(guān)習(xí)題
 0  252895  252903  252909  252913  252919  252921  252925  252931  252933  252939  252945  252949  252951  252955  252961  252963  252969  252973  252975  252979  252981  252985  252987  252989  252990  252991  252993  252994  252995  252997  252999  253003  253005  253009  253011  253015  253021  253023  253029  253033  253035  253039  253045  253051  253053  253059  253063  253065  253071  253075  253081  253089  266669 

科目: 來源: 題型:填空題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{a}^{x},x<0}\\{(a-2)x+3a,x≥0}\end{array}\right.$滿足對任意的x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,則a的取值范圍是(0,$\frac{1}{3}$].

查看答案和解析>>

科目: 來源: 題型:填空題

1.不等式|x|-|x-3|<2的解集為{x|x<2.5}.

查看答案和解析>>

科目: 來源: 題型:填空題

20.己知a>0,b>0,c>1且a+b=1,則($\frac{{a}^{2}+1}{ab}$-2)•c+$\frac{\sqrt{2}}{c-1}$的最小值為$4+2\sqrt{2}$.

查看答案和解析>>

科目: 來源: 題型:填空題

19.已知四棱錐P-ABCD的底面ABCD是邊長為2的正方形,側(cè)面PAD是邊長為2的正三角形,平面ABCD⊥平面PAD,M是PC的中點,O是AD的中點,則直線BM與平面PCO所成角的正弦值是$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目: 來源: 題型:填空題

18.不等式組$\left\{\begin{array}{l}x≥0\\ x-y-1≥0\\ 3x-2y-6≤0\end{array}\right.$所表示的平面區(qū)域的面積等于4,z=3x-2y的最大值為6.

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知f(x)=2sin(ωx+φ)(x∈R,ω>0,0<φ<$\frac{π}{2}$)有兩個相鄰的零點:-$\frac{π}{6}$,$\frac{π}{2}$.
(1)求f(x)的解析式;
(2)若f(α)=$\frac{2\sqrt{2}}{3}$,求cos6α的值.

查看答案和解析>>

科目: 來源: 題型:解答題

16.如圖1,矩形ABCD,AB=2BC=4,M,N,E分別為AD,BC,CD的中點.現(xiàn)將△ADE沿AE折起,折起過程中,點D仍記作D,得到如圖2所示的四棱錐D-ABCE.
(1)證明:MN∥平面CDE;
(2)當(dāng)AD⊥BE時,求直線BD與平面CDE所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:填空題

15.設(shè)函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0),在($\frac{π}{6}$,$\frac{π}{2}$)上既無最大值,也無最小值,且-f($\frac{π}{2}$)=f(0)=f($\frac{π}{6}$),則下列結(jié)論成立的是①②④.(把你認為正確結(jié)論的序號都寫上)
①若f(x1)≤f(x2)對任意實數(shù)x恒成立,則x2-x1必定是$\frac{π}{2}$的整數(shù)倍;
②y=f(x)的圖象關(guān)于($\frac{4π}{3}$,0)對稱;
③對于函數(shù)y=|f(x)|(x∈R)的圖象,x=-$\frac{5π}{12}$一定是一條對稱軸且相鄰兩條對稱軸之間的距離是$\frac{π}{2}$;
④函數(shù)f(x)在每一個[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$](k∈Z)上具有嚴(yán)格的單調(diào)性.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.在平行四平行邊形OABC中,$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,點M在OA上,且$\overrightarrow{OM}$=2$\overrightarrow{MA}$,N為BC的中點,則$\overrightarrow{MN}$=( 。
A.$\frac{1}{2}$$\overrightarrow{c}$-$\frac{1}{6}$$\overrightarrow{a}$B.$\overrightarrow{c}$-$\frac{1}{6}$$\overrightarrow{a}$C.$\frac{3}{2}$$\overrightarrow{a}$-$\overrightarrow{c}$D.$\overrightarrow{a}$+$\frac{1}{2}$$\stackrel{c}{→}$

查看答案和解析>>

科目: 來源: 題型:解答題

13.如圖,已知M、N分別為四面體ABCD的面BCD與面ACD的重心,且G為AM上一點,且GM:GA=1:3,設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,$\overrightarrow{AD}$=$\overrightarrow{c}$,試用$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$表示$\overrightarrow{BG}$,$\overrightarrow{BN}$.

查看答案和解析>>

同步練習(xí)冊答案