科目: 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,拋物線上橫坐標(biāo)為的點(diǎn)到拋物線頂點(diǎn)的距離與該點(diǎn)到拋物線準(zhǔn)線的距離相等。
(1)求拋物線的方程;
(2)設(shè)直線與拋物線交于兩點(diǎn),若,求實(shí)數(shù)的值。
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C的兩個(gè)焦點(diǎn)分別為,且橢圓C過點(diǎn)P(3,2).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)與直線OP平行的直線交橢圓C于A,B兩點(diǎn),求△PAB面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了完成對(duì)某城市的工薪階層是否贊成調(diào)整個(gè)人所得稅稅率的調(diào)查,隨機(jī)抽取了60人,作出了他們的月收入頻率分布直方圖(如圖),同時(shí)得到了他們?cè)率杖肭闆r與贊成人數(shù)統(tǒng)計(jì)表(如下表):
(1)試根據(jù)頻率分布直方圖估計(jì)這60人的平均月收入;
(2)若從月收入(單位:百元)在[65,75)的被調(diào)查者中隨機(jī)選取2人進(jìn)行追蹤調(diào)查,求2人都不贊成的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一個(gè)水輪的半徑為4m,水輪圓心O距離水面2m,已知水輪每分鐘轉(zhuǎn)動(dòng)5圈,如果當(dāng)水輪上點(diǎn)P從水中浮現(xiàn)時(shí)(圖中點(diǎn)p0)開始計(jì)算時(shí)間.
(1)將點(diǎn)p距離水面的高度z(m)表示為時(shí)間t(s)的函數(shù);
(2)點(diǎn)p第一次到達(dá)最高點(diǎn)大約需要多少時(shí)間?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率低于,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率為( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知x0,x0+是函數(shù)f(x)=cos2(wx﹣)﹣sin2wx(ω>0)的兩個(gè)相鄰的零點(diǎn)
(1)求的值;
(2)若對(duì)任意,都有f(x)﹣m≤0,求實(shí)數(shù)m的取值范圍.
(3)若關(guān)于的方程在上有兩個(gè)不同的解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】某初級(jí)中學(xué)有三個(gè)年級(jí),各年級(jí)男、女人數(shù)如下表:
初一年級(jí) | 初二年級(jí) | 初三年級(jí) | |
女生 | 370 | 200 | |
男生 | 380 | 370 | 300 |
已知在全校學(xué)生中隨機(jī)抽取1名,抽到初二年級(jí)女生的概率是0.19.
(1)求的值;
(2)用分層抽樣的方法在初三年級(jí)中抽取一個(gè)容量為5的樣本,求該樣本中女生的人數(shù);
(3)用隨機(jī)抽樣的方法從初二年級(jí)女生中選出8人,測(cè)量它們的左眼視力,結(jié)果如下:1.2,1.5,1.2,1.5,1.5,1.3,1.0,1.2.把這8人的左眼視力看作一個(gè)總體,從中任取一個(gè)數(shù),求該數(shù)與樣本平均數(shù)之差的絕對(duì)值不超過0.1的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對(duì)某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖,將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”,已知“體育迷”中有10名女性.
(Ⅰ)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料判斷你是否有95%以上的把握認(rèn)為“體育迷”與性別有關(guān)?
非體育迷 | 體育迷 | 合計(jì) | |
男 | |||
女 | |||
合計(jì) |
(參考公式,其中.)
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(Ⅱ)將日均收看該體育項(xiàng)目不低于50分鐘的觀眾稱為“超級(jí)體育迷”,已知“超級(jí)體育迷”中有2名女性,若從“超級(jí)體育迷”中任意選取2人,求至少有1名女性觀眾的概率。
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)f(x)= (m>0,n>0).
(1) 當(dāng)m=n=1時(shí),求證:f(x)不是奇函數(shù);
(2) 設(shè)f(x)是奇函數(shù),求m與n的值;
(3) 在(2)的條件下,求不等式f(f(x))+f <0的解集.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com