精英家教網 > 高中數學 > 題目詳情

【題目】某初級中學有三個年級,各年級男、女人數如下表:

初一年級

初二年級

初三年級

女生

370

200

男生

380

370

300

已知在全校學生中隨機抽取1名,抽到初二年級女生的概率是0.19.

(1)求的值;

(2)用分層抽樣的方法在初三年級中抽取一個容量為5的樣本,求該樣本中女生的人數;

(3)用隨機抽樣的方法從初二年級女生中選出8人,測量它們的左眼視力,結果如下:1.2,1.5,1.2,1.5,1.5,1.3,1.0,1.2.把這8人的左眼視力看作一個總體,從中任取一個數,求該數與樣本平均數之差的絕對值不超過0.1的概率.

【答案】(1);(2)抽取了2名女生.;(3).

【解析】試題分析:(1)根據題意抽到初二年級女生的概率是,所以,于是求出;(2)因為采用的是分層抽樣的方法,所以比例是一樣的,就有,解得;(3)求出樣本的平均數,滿足與樣本平均數之差的絕對值不超過0.1的數分別為1.2,1.2,1.3,1.2.這4個數,故概率為.

試題解析:(1)∵,∴.

(2)設所抽樣本中有m個女生,因為用分層抽樣的方法在初三年級中抽取一個容量為5的樣本,所以,解得也就是抽取了2名女生.

(3)樣本的平均數為,

那么與樣本平均數之差的絕對值不超過0.1的數為1.2,1.2,1.3,1.2.這4個數,總的個數為8,

∴該數與樣本平均數之差的約對值不超過0.1的概率為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設函數f(x)=ex-ax-2.

(1)求f(x)的單調區(qū)間;

(2)若a=1,k為整數,且當x>0時,(x-k)f(x)+x+1>0,求k的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】本題滿分14本題共有2個小題,第1小題滿分6分,第2小題滿分8

沙漏是古代的一種時裝置,它由兩個形狀完全相同的容器和一個狹窄的連接管道組成,開始時細沙全部在上部容器中,細通過連接管道全部到下部容器所需要的時間稱為該沙漏的一個沙時。如圖,某沙漏由上下兩個圓錐組成圓錐的底面直徑和高均為8cm,細沙全部在上部時,高度為圓錐高度的細管長忽略不

1如果該沙漏每秒鐘漏下0.02cm3的沙,則該沙漏的一個沙時為多少秒精確1秒?

2全部漏入下部恰好堆成一蓋沙漏底的圓錐形沙,求此錐形高度精確0.1cm

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線).

(1)證明:直線過定點;

(2)若直線不經過第四象限,求的取值范圍;

(3)若直線軸負半軸于,交軸正半軸于,△的面積為為坐標原點),求的最小值,并求此時直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】條件;條件:直線與圓相切,則的( )

A. 充分必要條件 B. 必要不充分條件

C. 充分不必要條件 D. 既不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C的兩個焦點分別為,且橢圓C過點P3,2

求橢圓C的標準方程;

與直線OP平行的直線交橢圓C于A,B兩點,求△PAB面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4—4:坐標系與參數方程

在平面直角坐標系中,直線的參數方程為為參數.以原點為極點,軸正半軸為極軸建立極坐標系,圓的方程為.

寫出直線的普通方程和圓的直角坐標方程;

若點的直角坐標為,圓與直線交于兩點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列的前項和為,且.

(1)求數列的通項公式,并寫出推理過程;

(2)令,,試比較的大小,并給出你的證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】汽車廠生產三類轎車,每類轎車均有舒適型和標準型兩類型號,某月的產量如下表:(單位:輛). 按類用分層抽樣的方法在這個月生產的轎車中抽取50輛,其中有類轎車10輛.

(1)求的值;

(2)用分層抽樣的方法在類轎車中抽取一個容量為5的樣本,從中任取2輛,求至少有1輛舒適型轎車的概率;

(3)用隨機抽樣的方法從類舒適型轎車中抽取8輛,經檢測它們的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把這8輛轎車的得分看成一個總體,從中任取一個數,求該數與樣本平均數之差的絕對值不超過0.5的概率.

查看答案和解析>>

同步練習冊答案