科目: 來源: 題型:
【題目】一個盒子中裝有2個紅球,4個白球,除顏色外,它們的形狀、大小、質量等完全相同
(1)采用不放回抽樣,先后取兩次,每次隨機取一個球,求恰好取到1個紅球,七個白球的概率;
(2)采用放回抽樣,每次隨機抽取一球,連續(xù)取3次,求至少有1次取到紅球的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】2015年12月,京津冀等地數城市指數“爆表”,北方此輪污染為2015年以來最嚴重的污染過程,為了探究車流量與的濃度是否相關,現采集到北方某城市2015年12月份某星期星期一到星期日某一時間段車流量與的數據如表:
時間 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期七 |
車流量(萬輛) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
的濃度(微克/立方米) | 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(1)由散點圖知與具有線性相關關系,求關于的線性回歸方程;
(2)(i)利用(1)所求的回歸方程,預測該市車流量為8萬輛時的濃度;
(ii)規(guī)定:當一天內的濃度平均值在內,空氣質量等級為優(yōu);當一天內的濃度平均值在內,空氣質量等級為良,為使該市某日空氣質量為優(yōu)或者為良,則應控制當天車流量在多少萬輛以內?(結果以萬輛為單位,保留整數)
參考公式:回歸直線的方程是,其中, .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知底角為45的等腰梯形ABCD,底邊BC長為7cm,腰長為,當一條垂直于底邊BC
(垂足為F)的直線l從左至右移動(與梯形ABCD有公共點)時,直線l把梯形分成兩部分,令BF=x
(1)試寫出直線l左邊部分的面積f(x)與x的函數.
(2)已知A={x|f(x)<4},B={x|a2<x<a+2},若A∪B=B,求a的取值范圍。.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的方程為,兩焦點,點在橢圓上.
(1)求橢圓的方程;
(2)如圖,動直線與橢圓有且僅有一個公共點,點、是直線上的兩點,且.求四邊形面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某學校進行體驗,現得到所有男生的身高數據,從中隨機抽取50人進行統(tǒng)計(已知這50個身高介于155 到195之間),現將抽取結果按如下方式分成八組:第一組,第二組,…,第八組,并按此分組繪制如圖所示的頻率分布直方圖,其中第六組和第七組還沒有繪制完成,已知第一組與第八組人數相同,第六組和第七組人數的比為5:2.
(1)補全頻率分布直方圖;
(2)根據頻率分布直方圖估計這50位男生身高的中位數;
(3)用分層抽樣的方法在身高為內抽取一個容量為5的樣本,從樣本中任意抽取2位男生,求這兩位男生身高都在內的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】東莞市某高級中學在今年4月份安裝了一批空調,關于這批空調的使用年限(單位:年, )和所支出的維護費用(單位:萬元)廠家提供的統(tǒng)計資料如下:
(1)請根據以上數據,用最小二乘法原理求出維護費用關于的線性回歸方程;
(2)若規(guī)定當維護費用超過13.1萬元時,該批空調必須報廢,試根據(1)的結論求該批空調使用年限的最大值.
參考公式:最小二乘估計線性回歸方程中系數計算公式:
,
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知圓:經過橢圓:()的左右焦點,,與橢圓在第一象限的交點為,且,,三點共線.
(Ⅰ)求橢圓的方程;
(Ⅱ)設與直線(為原點)平行的直線交橢圓于,兩點.當的面積取到最大值時,求直線的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】袋中裝有偶數個球,其中紅球、黑球各占一半,甲、乙、丙是三個空盒.每次從袋中任取兩個球,將其中一個球放入甲盒,如果這個球是紅球,就將另一個球放入乙盒,否則就放入丙盒.重復上述過程,直到袋中所有球都放入盒中,則( )
A. 乙盒中紅球與丙盒中黑球一樣多
B. 乙盒中黑球不多于丙盒中黑球
C. 乙盒中紅球不多于丙盒中紅球
D. 乙盒中黑球與丙盒中紅球一樣多
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com