科目: 來源: 題型:
【題目】某市某水產(chǎn)養(yǎng)殖戶進行小龍蝦銷售,已知每千克小龍蝦養(yǎng)殖成本為6元,在整個銷售旺季的80天里,銷售單價(元/千克)與時間第(天)之間的函數(shù)關系為:
,日銷售量(千克)與時間第(天)之間的函數(shù)關系如圖所示:
(1)求日銷售量與時間的函數(shù)關系式?
(2)哪一天的日銷售利潤最大?最大利潤是多少?
(3)在實際銷售的前40天中,該養(yǎng)殖戶決定每銷售1千克小龍蝦,就捐贈元給村里的特困戶,在這前40天中,每天扣除捐贈后的日銷售利潤隨時間的增大而增大,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】某中學擬在高一下學期開設游泳選修課,為了了解高一學生喜歡游泳是否與性別有關,該學校對100名高一新生進行了問卷調查,得到如下列聯(lián)表:
喜歡游泳 | 不喜歡游泳 | 合計 | |
男生 | 10 | ||
女生 | 20 | ||
合計 |
已知在這100人中隨機抽取1人抽到喜歡游泳的學生的概率為.
(1)請將上述列聯(lián)表補充完整;
(2)并判斷是否有99.9%的把握認為喜歡游泳與性別有關?并說明你的理由;
(3)已知在被調查的學生中有5名來自甲班,其中3名喜歡游泳,現(xiàn)從這5名學生中隨機抽取2人,求恰好有1人喜歡游泳的概率.
下面的臨界值表僅供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
科目: 來源: 題型:
【題目】2014年5月,我省南昌市遭受連日大暴雨天氣,某網(wǎng)站就“民眾是否支持加大修建城市地下排水設施的資金投入”進行投票,按照南昌暴雨前后兩個時間收集有效投票,暴雨后的投票收集了份,暴雨前的投票也收集了份,所得統(tǒng)計結果如下表:
已知工作人與從所有投票中任取一個,取到“不支持投入”的投票的概率為.
(1)求列表中數(shù)據(jù)的值;
(2)能夠有多大的把握認為南昌暴雨對民眾是否贊成加大對修建城市地下排水設施的投入有關系?
附:
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=ln x++ax(a是實數(shù)),g(x)=+1.
(1)當a=2時,求函數(shù)f(x)在定義域上的最值;
(2)若函數(shù)f(x)在[1,+∞)上是單調函數(shù),求a的取值范圍;
(3)是否存在正實數(shù)a滿足:對于任意x1∈[1,2],總存在x2∈[1,2],使得f(x1)=g(x2)成立? 若存在,求出a的取值范圍,若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
已知在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),現(xiàn)以原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.
(1)求曲線的普通方程和直線的直角坐標方程;
(2)在曲線上是否存在一點,使點到直線的距離最小?若存在,求出距離的最小值及點的直角坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)= ;
(1)若f(x)的定義域為 (-∞,+∞), 求實數(shù)a的范圍;
(2)若f(x)的值域為 [0, +∞), 求實數(shù)a的范圍
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,以原點為圓心的兩個同心圓,其中,大圓的半徑為 ,小圓的半徑為,點為大圓上一動點,連接,與小圓交于點,過點作軸的垂線,垂足為,過點作直線的垂線,垂足為,點,記.
(1)求點的坐標(用含有的式子表示),并寫出點的軌跡方程,指出點的軌跡是什么曲線;
(2)設點的軌跡為,點分別是曲線上的兩個動點,且,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com