相關(guān)習(xí)題
 0  256719  256727  256733  256737  256743  256745  256749  256755  256757  256763  256769  256773  256775  256779  256785  256787  256793  256797  256799  256803  256805  256809  256811  256813  256814  256815  256817  256818  256819  256821  256823  256827  256829  256833  256835  256839  256845  256847  256853  256857  256859  256863  256869  256875  256877  256883  256887  256889  256895  256899  256905  256913  266669 

科目: 來(lái)源: 題型:

【題目】已知函數(shù)是定義在上的奇函數(shù).

(1)求的解析式;

(2)證明:函數(shù)在定義域上是增函數(shù);

(3)設(shè)是否存在正實(shí)數(shù)使得函數(shù)內(nèi)的最小值為?若存在,求出的值;若存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,且點(diǎn)在橢圓上.

求橢圓的標(biāo)準(zhǔn)方程;

已知?jiǎng)又本過(guò)點(diǎn)且與橢圓交于兩點(diǎn).試問軸上是否存在定點(diǎn),使得恒成立?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】2015812日天津發(fā)生;分卮蟊ㄊ鹿剩斐芍卮笕藛T和經(jīng)濟(jì)損失.某港口組織消防人員對(duì)該港口的公司的集裝箱進(jìn)行安全抽檢,已知消防安全等級(jí)共分為四個(gè)等級(jí)(一級(jí)為優(yōu),二級(jí)為良,三級(jí)為中等,四級(jí)為差),該港口消防安全等級(jí)的統(tǒng)計(jì)結(jié)果如下表所示:

現(xiàn)從該港口隨機(jī)抽取了家公司,其中消防安全等級(jí)為三級(jí)的恰有20家.

)求的值;

)按消防安全等級(jí)利用分層抽樣的方法從這家公司中抽取10家,除去消防安全等級(jí)為一級(jí)和四級(jí)的公司后,再?gòu)氖S喙局腥我獬槿?/span>2家,求抽取的這2家公司的消防安全等級(jí)都是二級(jí)的概率.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知橢圓 )的焦距為,且經(jīng)過(guò)點(diǎn)

(Ⅰ)求橢圓的方程;

(Ⅱ)是橢圓上兩點(diǎn),線段的垂直平分線經(jīng)過(guò),求面積的最大值(為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),求函數(shù)的圖象在點(diǎn)(1, )處的切線方程;

(Ⅱ)討論函數(shù)的單調(diào)區(qū)間;

(Ⅲ)已知,對(duì)于函數(shù)圖象上任意不同的兩點(diǎn),其中,直線的斜率為,記,若求證

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】信息科技的進(jìn)步和互聯(lián)網(wǎng)商業(yè)模式的興起,全方位地改變了大家金融消費(fèi)的習(xí)慣和金融交易模式,現(xiàn)在銀行的大部分業(yè)務(wù)都可以通過(guò)智能終端設(shè)備完成,多家銀行職員人數(shù)在悄然減少.某銀行現(xiàn)有職員320人,平均每人每年可創(chuàng)利20萬(wàn)元.據(jù)評(píng)估,在經(jīng)營(yíng)條件不變的前提下,每裁員1人,則留崗職員每人每年多創(chuàng)利0.2萬(wàn)元,但銀行需付下崗職員每人每年6萬(wàn)元的生活費(fèi),并且該銀行正常運(yùn)轉(zhuǎn)所需人數(shù)不得小于現(xiàn)有職員的,為使裁員后獲得的經(jīng)濟(jì)效益最大,該銀行應(yīng)裁員多少人?此時(shí)銀行所獲得的最大經(jīng)濟(jì)效益是多少萬(wàn)元?

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是平行四邊形, ,側(cè)面底面, , 分別為的中點(diǎn),點(diǎn)在線段上.

(Ⅰ)求證: 平面

(Ⅱ)如果直線與平面所成的角和直線與平面所成的角相等,求的值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是直角梯形,側(cè)棱底面, 垂直于, , 是棱的中點(diǎn).

(Ⅰ)求證: 平面;

(Ⅱ)求平面與平面所成的二面角的余弦值;

(Ⅲ)設(shè)點(diǎn)是直線上的動(dòng)點(diǎn), 與平面所成的角為,求的最大值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】某學(xué)校要用甲、乙、丙三輛校車把教職工從老校區(qū)接到校本部,已知從老校區(qū)到校本部有兩條公路,校車走公路①時(shí)堵車的概率為,校車走公路②時(shí)堵車的概率為p.若甲、乙兩輛校車走公路①,丙校車由于其他原因走公路②,且三輛校車是否堵車相互之間沒有影響.

(1)若三輛校車中恰有一輛校車被堵的概率為,求走公路②堵車的概率;

(2)在(1)的條件下,求三輛校車中被堵車輛的輛數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知為函數(shù)圖象上一點(diǎn), 為坐標(biāo)原點(diǎn),記直線的斜率

1)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)的取值范圍;

2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;

3)求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案