相關(guān)習(xí)題
 0  257280  257288  257294  257298  257304  257306  257310  257316  257318  257324  257330  257334  257336  257340  257346  257348  257354  257358  257360  257364  257366  257370  257372  257374  257375  257376  257378  257379  257380  257382  257384  257388  257390  257394  257396  257400  257406  257408  257414  257418  257420  257424  257430  257436  257438  257444  257448  257450  257456  257460  257466  257474  266669 

科目: 來源: 題型:

【題目】已知橢圓的焦點在軸上,且橢圓的焦距為2.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過點的直線與橢圓交于兩點,過軸且與橢圓交于另一點, 為橢圓的右焦點,求證:三點在同一條直線上.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=2sin(x+ )cosx.
(Ⅰ)求f(x)的值域;
(Ⅱ)設(shè)△ABC的內(nèi)角A、B、C所對的邊分別為a、b、c,已知A為銳角,f(A)= ,b=2,c=3,求cos(A﹣B)的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知: 、 是同一平面上的三個向量,其中 =(1,2).
(1)若| |=2 ,且 ,求 的坐標(biāo).
(2)若| |= ,且 +2 與2 垂直,求 的夾角θ

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)向量 =(sinx,cosx), =(cosx,sinx),x∈R,函數(shù)f(x)= ).
(1)求函數(shù)f(x)的最小正周期;
(2)當(dāng)x∈[- , ]時,求函數(shù)f(x)的值域.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=2cos2(x﹣ )﹣ sin2x+1
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)x∈( )時,若f(x)≥log2t恒成立,求 t的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知f(x)= (x≠0,a>0)是奇函數(shù),且當(dāng)x>0時,f(x)有最小值2
(1)求f(x)的表達式;
(2)設(shè)數(shù)列{an}滿足a1=2,2an+1=f(an)﹣an(n∈N*).令bn= ,求證bn+1=bn2;
(3)求數(shù)列{bn}的通項公式.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知定義在上的奇函數(shù)滿足, 為數(shù)列的前項和,且,則__________

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4-4 坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以原點為極點, 軸正半軸為極軸 建立極坐標(biāo)系,圓的方程為

(1)寫出直線的普通方程和圓的直角坐標(biāo)方程;

(2)若點的直角坐標(biāo)為,圓與直線交于A,B兩點,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù), 為自然對數(shù)的底數(shù)).

(1)若曲線在點處的切線斜率為0,且有極小值,

求實數(shù)的取值范圍.

(2)當(dāng) 時,若不等式: 在區(qū)間內(nèi)恒成立,求實數(shù)的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】某研究小組在電腦上進行人工降雨模擬實驗,準(zhǔn)備用A、B、C三種人工降雨方式分別對甲、乙、丙三地實施人工降雨,其實驗統(tǒng)計結(jié)果如下

方式

實施地點

大雨

中雨

小雨

模擬實驗次數(shù)

A

2次

6次

4次

12次

B

3次

6次

3次

12次

C

2次

2次

8次

12次

假定對甲、乙、丙三地實施的人工降雨彼此互不影響,且不考慮洪澇災(zāi)害,請根據(jù)統(tǒng)計數(shù)據(jù):

1)求甲、乙、丙三地都恰為中雨的概率;

2考慮不同地區(qū)的干旱程度,當(dāng)雨量達到理想狀態(tài)時,能緩解旱情,若甲、丙地需中雨或大雨即達到理想狀態(tài),乙地必須是大雨才達到理想狀態(tài),記甲、乙、丙三地中緩解旱情的個數(shù)為隨機變量,求的分布列和數(shù)學(xué)期望

查看答案和解析>>

同步練習(xí)冊答案