科目: 來源: 題型:
【題目】如圖,在多面體中,四邊形為等腰梯形,,,,與相交于,且,矩形底面,為線段上一動點,滿足.
(Ⅰ)若平面,求實數(shù)的值;
(Ⅱ)當(dāng)時,銳二面角的余弦值為,求多面體的體積.
查看答案和解析>>
科目: 來源: 題型:
【題目】朱世杰是歷史上最未打的數(shù)學(xué)家之一,他所著的《四元玉鑒》卷中“如像招數(shù)一五間”,有如下問題:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日轉(zhuǎn)多七人,每人日支米三升,共支米四百三石九斗二升,問筑堤幾日?”.其大意為:“官府陸續(xù)派遣1864人前往修筑堤壩,第一天派出64人,從第二天開始,每天派出的人數(shù)比前一天多7人,修筑堤壩的每人每天發(fā)大米3升,共發(fā)出大米40392升,問修筑堤壩多少天”.在這個問題中,前5天應(yīng)發(fā)大米( )
A. 894升 B. 1170升 C. 1275升 D. 1457升
查看答案和解析>>
科目: 來源: 題型:
【題目】已知O點為△ABC所在平面內(nèi)一點,且滿足 +2 +3 = ,現(xiàn)將一粒質(zhì)點隨機(jī)撒在△ABC內(nèi),若質(zhì)點落在△AOC的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】數(shù)列對于確定的正整數(shù),若存在正整數(shù)使得成立,則稱數(shù)列為“階可分拆數(shù)列”.
(1)設(shè) 是首項為2,公差為2的等差數(shù)列,證明為“3階可分拆數(shù)列”;
(2)設(shè)數(shù)列的前項和為,若數(shù)列為“階可分拆數(shù)列”,求實數(shù)的值;
(3)設(shè),試探求是否存在使得若數(shù)列為“階可分拆數(shù)列”.若存在,請求出所有,若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè),,,是橢圓:()的四個頂點,四邊形是圓:的外切平行四邊形,其面積為.橢圓的內(nèi)接的重心(三條中線的交點)為坐標(biāo)原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)的面積是否為定值?若是,求出該定值,若不是,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】從1,3,5,7,9這五個數(shù)中,每次取出兩個不同的數(shù)分別記為a,b,共可得到lga﹣lgb的不同值的個數(shù)是( )
A.9
B.10
C.18
D.20
查看答案和解析>>
科目: 來源: 題型:
【題目】(本小題滿分13分)
品酒師需定期接受酒味鑒別功能測試,一種通常采用的測試方法如下:拿出瓶外觀相同但品質(zhì)不同的酒讓其品嘗,要求其按品質(zhì)優(yōu)劣為它們排序;經(jīng)過一段時間,等其記憶淡忘之后,再讓其品嘗這瓶酒,并重新按品質(zhì)優(yōu)劣為它們排序,這稱為一輪測試。根據(jù)一輪測試中的兩次排序的偏離程度的高低為其評為。
現(xiàn)設(shè),分別以表示第一次排序時被排為1,2,3,4的四種酒在第二次排序時的序號,并令
,
則是對兩次排序的偏離程度的一種描述。
(Ⅰ)寫出的可能值集合;
(Ⅱ)假設(shè)等可能地為1,2,3,4的各種排列,求的分布列;
(Ⅲ)某品酒師在相繼進(jìn)行的三輪測試中,都有,
(i)試按(Ⅱ)中的結(jié)果,計算出現(xiàn)這種現(xiàn)象的概率(假定各輪測試相互獨立);
(ii)你認(rèn)為該品酒師的酒味鑒別功能如何?說明理由。
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),設(shè).
(1)判斷函數(shù)零點的個數(shù),并給出證明;
(2)首項為的數(shù)列滿足:①;②.其中.求證:對于任意的,均有.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com