科目: 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,直線的參數方程為,( 為參數),在以坐標原點為極點, 軸正半軸為極軸的極坐標系中,曲線的極坐標方程為
(Ⅰ)求直線的普通方程和曲線的直角坐標方程;
(Ⅱ)已知點,若點是直線上一動點,過點作曲線的兩條切線,切點分別為,求四邊形面積的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】下列四種說法正確的是( )
①函數f(x)的定義域是R,則“x∈R,f(x+1)>f(x)”是“函數f(x)為增函數”的充要條件
②命題“x∈R,( )x>0”的否定是“x∈R,( )x≤0”
③命題“若x=2,則x2﹣3x+2=0”的逆否命題是“若x2﹣3x+2≠0,則x≠2”
④p:在△ABC中,若cos2A=cos2B,則A=B;q:y=sinx在第一象限是增函數.則p∧q為真命題.
A.①②③④
B.①③
C.①③④
D.③
查看答案和解析>>
科目: 來源: 題型:
【題目】某投資公司現提供兩種一年期投資理財方案,一年后投資盈虧的情況如下表:
投資股市 | 獲利 | 不賠不賺 | 虧損 | 購買基金 | 獲利 | 不賠不賺 | 虧損 | |
概率 |
|
|
| 概率 |
|
|
|
(Ⅰ)甲、乙兩人在投資顧問的建議下分別選擇“投資股市”和“買基金”,若一年后他們中至少有一人盈利的概率大于,求的取值范圍;
(Ⅱ)若,某人現有萬元資金,決定在“投資股市”和“購買基金”這兩種方案中選擇出一種,那么選擇何種方案可使得一年后的投資收益的數學期望值較大.
查看答案和解析>>
科目: 來源: 題型:
【題目】若二次函數f(x)=ax2+bx+c(a,b,c∈R)滿足f(x+1)﹣f(x)=4x+1,且f(0)=3.
(1)求f(x)的解析式;
(2)若在區(qū)間[﹣1,1]上,不等式f(x)>6x+m恒成立,求實數m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓,定點為圓上一動點,線段的垂直平分線交線段于點,設點的軌跡為曲線;
(Ⅰ)求曲線的方程;
(Ⅱ)若經過的直線交曲線于不同的兩點,(點在點, 之間),且滿足,求直線的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校高一(1)班的一次數學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如下圖:
求分數在的頻率及全班人數;
求分數在之間的頻數,并計算頻率分布直方圖中間矩形的高;
若要從分數在之間的試卷中任取兩份分析學生失分情況,求在抽取的試卷中,至少有一份分數在之間的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數f(x)滿足f(x)=f′(1)ex﹣1﹣f(0)x+ x2;
(1)求f(x)的解析式及單調區(qū)間;
(2)若 ,求(a+1)b的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】設f(x)=aex+ +b(a>0).
(1)求f(x)在[0,+∞)上的最小值;
(2)設曲線y=f(x)在點(2,f(2))的切線方程為3x﹣2y=0,求a、b的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】紅隊隊員甲、乙、丙與藍隊隊員A、B、C進行圍棋比賽,甲對A,乙對B,丙對C各一盤,已知甲勝A,乙勝B,丙勝C的概率分別為0.6,0.5,0.5,假設各盤比賽結果相互獨立.
(1)求紅隊至少兩名隊員獲勝的概率;
(2)用ξ表示紅隊隊員獲勝的總盤數,求ξ的分布列和數學期望Eξ.
查看答案和解析>>
科目: 來源: 題型:
【題目】國慶期間,某旅行社組團去風景區(qū)旅游,若旅行團人數在30人或30人以下,每人需交費用為900元;若旅行團人數多于30人,則給予優(yōu)惠:每多1人,人均費用減少10元,直到達到規(guī)定人數75人為止.旅行社需支付各種費用共計15000元.
(1)寫出每人需交費用y關于人數x的函數;
(2)旅行團人數為多少時,旅行社可獲得最大利潤?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com