相關(guān)習題
 0  258212  258220  258226  258230  258236  258238  258242  258248  258250  258256  258262  258266  258268  258272  258278  258280  258286  258290  258292  258296  258298  258302  258304  258306  258307  258308  258310  258311  258312  258314  258316  258320  258322  258326  258328  258332  258338  258340  258346  258350  258352  258356  258362  258368  258370  258376  258380  258382  258388  258392  258398  258406  266669 

科目: 來源: 題型:

【題目】設(shè)圓滿足:(1)截軸所得弦長為2;(2)被軸分成兩段圓弧,其弧長的比為.在滿足條件(1)、(2)的所有圓中,圓心到直線的距離最小的圓的方程為__________.

查看答案和解析>>

科目: 來源: 題型:

【題目】某特色餐館開通了美團外賣服務(wù),在一周內(nèi)的某特色菜外賣份數(shù)(份)與收入(元)之間有如下的對應數(shù)據(jù):

外賣份數(shù)(份)

2

4

5

6

8

收入(元)

30

40

60

50

70

(1)畫出散點圖;

(2)求回歸直線方程;

(3)據(jù)此估計外賣份數(shù)為12份時,收入為多少元.

注:①參考公式:線性回歸方程系數(shù)公式, ;

②參考數(shù)據(jù): , ,

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)點,動圓經(jīng)過點且和直線相切,記動圓的圓心的軌跡為曲線.

(1)求曲線的方程;

(2)設(shè)曲線上一點的橫坐標為,過的直線交于另一點,交軸于點,過點的垂線交于另一點.若的切線,求的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知{an}為等差數(shù)列,Sn為其前n項和.若a3=﹣6,S1=S5 , 則公差d=;Sn的最小值為

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標系中,以為極點, 軸的正半軸為極軸建立極坐標系,直線的參數(shù)方程為,曲線的極坐標方程為.

(1)寫出直線的直角坐標方程和曲線的普通方程;

(2)求直線與曲線的交點的直角坐標.

查看答案和解析>>

科目: 來源: 題型:

【題目】若以連續(xù)擲兩次骰子分別得到的點數(shù)m、n作為點P的坐標(m,n),求:
(1)點P在直線x+y=7上的概率;
(2)點P在圓x2+y2=25外的概率.
(3)將m,n,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=8,BC=4,E為DC邊的中點,沿AE將△ADE折起,在折起過程中,有幾個正確(
①ED⊥平面ACD ②CD⊥平面BED ③BD⊥平面ACD ④AD⊥平面BED.

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的左、右焦點分別為F1 , F2 , 直線l經(jīng)過F2且交橢圓C于A,B兩點(如圖),△ABF1的周長為4 ,原點O到直線l的最大距離為1.

(1)求橢圓C的標準方程;
(2)過F2作弦AB的垂線交橢圓C于M,N兩點,求四邊形AMBN面積最小時直線l的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】某種產(chǎn)品的廣告費支出x與銷售額y(單位:百萬元)之間有如下對應:

X

2

4

5

6

8

y

30

40

60

50

70


(1)求回歸直線方程.
(2)回歸直線必經(jīng)過的一點是哪一點?

查看答案和解析>>

科目: 來源: 題型:

【題目】為了了解小學生的體能情況,抽取了某校一個年級的部分學生進行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),已知圖中從左到右前三個小組的頻率分別為 0.1,0.3,0.4,第一小組的頻數(shù)為 5.

(1)求第四小組的頻率;
(2)若次數(shù)在 75 次以上(含75 次)為達標,試估計該年級學生跳繩測試的達標率.
(3)在這次測試中,一分鐘跳繩次數(shù)的中位數(shù)落在哪個小組內(nèi)?試求出中位數(shù).

查看答案和解析>>

同步練習冊答案