相關(guān)習(xí)題
 0  258813  258821  258827  258831  258837  258839  258843  258849  258851  258857  258863  258867  258869  258873  258879  258881  258887  258891  258893  258897  258899  258903  258905  258907  258908  258909  258911  258912  258913  258915  258917  258921  258923  258927  258929  258933  258939  258941  258947  258951  258953  258957  258963  258969  258971  258977  258981  258983  258989  258993  258999  259007  266669 

科目: 來源: 題型:

【題目】若a和b是計(jì)算機(jī)在區(qū)間(0,3)上產(chǎn)生的隨機(jī)數(shù),那么函數(shù)f(x)=lg(ax2+4x+4b) 的值域?yàn)镽的概率為

查看答案和解析>>

科目: 來源: 題型:

【題目】函數(shù)f(x)=ln(x2﹣x)的定義域?yàn)椋?)
A.(0,1)
B.[0,1]
C.(﹣∞,0)∪(1,+∞)
D.(﹣∞,0]∪[1,+∞)

查看答案和解析>>

科目: 來源: 題型:

【題目】已知數(shù)列{an},{bn}滿足a1=2,b1=4,且 2bn=an+an+1 , an+12=bnbn+1
(Ⅰ)求 a 2 , a3 , a4 及b2 , b3 , b4;
(Ⅱ)猜想{an},{bn} 的通項(xiàng)公式,并證明你的結(jié)論;
(Ⅲ)證明:對所有的 n∈N* , sin

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖:已知拋物線 C1:y2=2px (p>0),直線 l 與拋物線 C 相交于 A、B 兩點(diǎn),且當(dāng)傾斜角為 60°的直線 l 經(jīng)過拋物線 C1 的焦點(diǎn) F 時(shí),有|AB|=

(Ⅰ)求拋物線 C 的方程;
(Ⅱ)已知圓 C2:(x﹣1)2+y2= ,是否存在傾斜角不為 90°的直線 l,使得線段 AB 被圓 C2 截成三等分?若存在,求出直線 l 的方程;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】小王、小張兩位同學(xué)玩投擲正四面體(每個(gè)面都為等邊三角形的正三棱錐)骰子(骰子質(zhì)地均勻,各面上的點(diǎn)數(shù)分別為)游戲,規(guī)則:小王現(xiàn)擲一枚骰子,向下的點(diǎn)數(shù)記為,小張后擲一枚骰子,向下的點(diǎn)數(shù)記為

(1)在直角坐標(biāo)系中,以為坐標(biāo)的點(diǎn)共有幾個(gè)?試求點(diǎn)落在直線上的概率;

(2)規(guī)定:若,則小王贏,若,則小張贏,其他情況不分輸贏,試問這個(gè)游戲公平嗎?請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù) f(x)=x﹣ln x﹣2.
(Ⅰ)求函數(shù) f ( x) 的最小值;
(Ⅱ)如果不等式 x ln x+(1﹣k)x+k>0(k∈Z)在區(qū)間(1,+∞)上恒成立,求k的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】若分別為P(1,0)、Q(2,0),R(4,0)、S(8,0)四個(gè)點(diǎn)各作一條直線,所得四條直線恰圍成正方形,則該正方形的面積不可能為(
A.
B.
C.
D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)上的一個(gè)最高點(diǎn)的坐標(biāo)為,由此點(diǎn)到相鄰最低點(diǎn)間的曲線與x軸交于點(diǎn),若.

(1)求的解析式.

(2)求上的值域.

(3)若對任意實(shí)數(shù),不等式上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】函數(shù)的一段圖象如圖所示:將的圖象向右平移)個(gè)單位,可得到函數(shù)的圖象,且圖象關(guān)于原點(diǎn)對稱.(1)求的值.

(2)求 的最小值,并寫出的表達(dá)式.

(3)設(shè)t>0,關(guān)于x的函數(shù)在區(qū)間上最小值為-2,求t的范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知菱形 ABCD 中,對角線 AC 與 BD 相交于一點(diǎn) O,∠A=60°,將△BDC 沿著 BD 折起得△BDC',連結(jié) AC'.

(Ⅰ)求證:平面 AOC'⊥平面 ABD;
(Ⅱ)若點(diǎn) C'在平面 ABD 上的投影恰好是△ABD 的重心,求直線 CD 與底面 ADC'所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案