相關(guān)習(xí)題
 0  259682  259690  259696  259700  259706  259708  259712  259718  259720  259726  259732  259736  259738  259742  259748  259750  259756  259760  259762  259766  259768  259772  259774  259776  259777  259778  259780  259781  259782  259784  259786  259790  259792  259796  259798  259802  259808  259810  259816  259820  259822  259826  259832  259838  259840  259846  259850  259852  259858  259862  259868  259876  266669 

科目: 來源: 題型:

【題目】已知函數(shù)f(x)= ﹣m(lnx+ )(m為實數(shù),e=2.71828…是自然對數(shù)的底數(shù)). (Ⅰ)當(dāng)m>1時,討論f(x)的單調(diào)性;
(Ⅱ)若g(x)=x2f′(x)﹣xex在( ,3)內(nèi)有兩個零點,求實數(shù)m的取值范圍.
(Ⅲ)當(dāng)m=1時,證明:xf(x)+xlnx+1>x+

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù) ,的值域是,則實數(shù)的取值范圍是(  )

A. B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】函數(shù).

(1)求的單調(diào)區(qū)間;

(2)若,求證:.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓C a>b>0),四點P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點在橢圓C上.

(1)求C的方程;

(2)設(shè)直線l不經(jīng)過P2點且與C相交于A,B兩點.若直線P2A與直線P2B的斜率的和為–1,證明:l過定點.

查看答案和解析>>

科目: 來源: 題型:

【題目】為改善居民的生活環(huán)境,政府?dāng)M將一公園進(jìn)行改造擴(kuò)建,已知原公園是直徑為200米的半圓形,出入口在圓心處,為居民小區(qū),的距離為200米,按照設(shè)計要求,以居民小區(qū)和圓弧上點為線段向半圓外作等腰直角三角形為直角頂點),使改造后的公園成四邊形,如圖所示.

1)若時,與出入口的距離為多少米?

2設(shè)計在什么位置時,公園的面積最大?

查看答案和解析>>

科目: 來源: 題型:

【題目】某地隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增大,下表是該地一農(nóng)業(yè)銀行連續(xù)五年的儲蓄存款(年底余額),如下表:

為了研究方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理,,得到下表:

1)求關(guān)于的線性回歸方程;

2)求關(guān)于的線性回歸方程;

3)用所求回歸方程預(yù)測,到2020年底,該地儲蓄存款額大約可達(dá)多少?

(附:線性回歸方程:

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0)的左、右焦點分別為F1 , F2 , O為坐標(biāo)原點,點P(1, )在橢圓上,連接PF1交y軸于點Q,點Q滿足 = .直線l不過原點O且不平行于坐標(biāo)軸,l與橢圓C有兩個交點A,B. (Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點M( ,0),若直線l過橢圓C的右焦點F2 , 證明: 為定值;
(Ⅲ)若直線l過點(0,2),設(shè)N為橢圓C上一點,且滿足 + ,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Sn= (an﹣1),數(shù)列{bn}滿足bn+2=2bn+1﹣bn , 且b6=a3 , b60=a5 , 其中n∈N*. (Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)若cn=(﹣1)nbnbn+1 , 求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目: 來源: 題型:

【題目】某學(xué)校為了了解高中生的藝術(shù)素養(yǎng),從學(xué)校隨機(jī)選取男,女同學(xué)各50人進(jìn)行研究,對這100名學(xué)生在音樂、美術(shù)、戲劇、舞蹈等多個藝術(shù)項目進(jìn)行多方位的素質(zhì)測評,并把調(diào)查結(jié)果轉(zhuǎn)化為個人的素養(yǎng)指標(biāo),制成下圖,其中“*”表示男同學(xué),“+”表示女同學(xué).

,則認(rèn)定該同學(xué)為“初級水平”,若,則認(rèn)定該同學(xué)為“中級水平”,若,則認(rèn)定該同學(xué)為“高級水平”;若,則認(rèn)定該同學(xué)為“具備一定藝術(shù)發(fā)展?jié)撡|(zhì)”,否則為“不具備明顯藝術(shù)發(fā)展?jié)撡|(zhì)”.

(I)從50名女同學(xué)的中隨機(jī)選出一名,求該同學(xué)為“初級水平”的概率;

(Ⅱ)從男同學(xué)所有“不具備明顯藝術(shù)發(fā)展?jié)撡|(zhì)的中級或高級水平”中任選2名,求選出的2名均為“高級水平”的概率;

(Ⅲ)試比較這100名同學(xué)中,男、女生指標(biāo)的方差的大。ㄖ恍鑼懗鼋Y(jié)論).

查看答案和解析>>

科目: 來源: 題型:

【題目】某重點中學(xué)100位學(xué)生在市統(tǒng)考中的理科綜合分?jǐn)?shù),以, , , , , 分組的頻率分布直方圖如圖.

(1)求直方圖中的值;

(2)求理科綜合分?jǐn)?shù)的眾數(shù)和中位數(shù);

(3)在理科綜合分?jǐn)?shù)為 , 的四組學(xué)生中,用分層抽樣的方法抽取11名學(xué)生,則理科綜合分?jǐn)?shù)在的學(xué)生中應(yīng)抽取多少人?

查看答案和解析>>

同步練習(xí)冊答案