【題目】已知橢圓C a>b>0),四點(diǎn)P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三點(diǎn)在橢圓C上.

(1)求C的方程;

(2)設(shè)直線(xiàn)l不經(jīng)過(guò)P2點(diǎn)且與C相交于A,B兩點(diǎn).若直線(xiàn)P2A與直線(xiàn)P2B的斜率的和為–1,證明:l過(guò)定點(diǎn).

【答案】(1).(2)見(jiàn)解析。

【解析】試題分析:(1)根據(jù), 兩點(diǎn)關(guān)于y軸對(duì)稱(chēng),由橢圓的對(duì)稱(chēng)性可知C經(jīng)過(guò), 兩點(diǎn).另外由知,C不經(jīng)過(guò)點(diǎn)P1,所以點(diǎn)P2C上.因此在橢圓上,代入其標(biāo)準(zhǔn)方程,即可求出C的方程;(2)先設(shè)直線(xiàn)P2A與直線(xiàn)P2B的斜率分別為k1k2,再設(shè)直線(xiàn)l的方程,當(dāng)lx軸垂直時(shí),通過(guò)計(jì)算,不滿(mǎn)足題意,再設(shè)l ),將代入,寫(xiě)出判別式,利用根與系數(shù)的關(guān)系表示出x1+x2,x1x2,進(jìn)而表示出,根據(jù)列出等式表示出的關(guān)系,從而判斷出直線(xiàn)恒過(guò)定點(diǎn).

試題解析:(1)由于, 兩點(diǎn)關(guān)于y軸對(duì)稱(chēng),故由題設(shè)知C經(jīng)過(guò), 兩點(diǎn).

又由知,C不經(jīng)過(guò)點(diǎn)P1,所以點(diǎn)P2C上.

因此,解得.

C的方程為.

(2)設(shè)直線(xiàn)P2A與直線(xiàn)P2B的斜率分別為k1,k2,

如果lx軸垂直,設(shè)lx=t,由題設(shè)知,且,可得A,B的坐標(biāo)分別為(t, ),(t, ).

,得,不符合題設(shè).

從而可設(shè)l ).將代入

由題設(shè)可知.

設(shè)Ax1,y1),Bx2,y2),則x1+x2=x1x2=.

.

由題設(shè),故.

.

解得.

當(dāng)且僅當(dāng)時(shí), ,欲使l ,即,

所以l過(guò)定點(diǎn)(2,

點(diǎn)睛:橢圓的對(duì)稱(chēng)性是橢圓的一個(gè)重要性質(zhì),判斷點(diǎn)是否在橢圓上,可以通過(guò)這一方法進(jìn)行判斷;證明直線(xiàn)過(guò)定點(diǎn)的關(guān)鍵是設(shè)出直線(xiàn)方程,通過(guò)一定關(guān)系轉(zhuǎn)化,找出兩個(gè)參數(shù)之間的關(guān)系式,從而可以判斷過(guò)定點(diǎn)情況.另外,在設(shè)直線(xiàn)方程之前,若題設(shè)中未告知,則一定要討論直線(xiàn)斜率不存在和存在兩種情況,其通法是聯(lián)立方程,求判別式,利用根與系數(shù)的關(guān)系,再根據(jù)題設(shè)關(guān)系進(jìn)行化簡(jiǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)應(yīng)的邊分別為a,b,c,且(2a﹣c)cosB=bcosC. (Ⅰ)求角B的大;
(Ⅱ)若a=2,c=3,求sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)求函數(shù)fx)的單調(diào)遞增區(qū)間;

2)將函數(shù)fx)的圖象向右平移個(gè)單位,再將所得圖象的橫坐標(biāo)縮短到原來(lái)的一半,縱坐標(biāo)不變,得到新的函數(shù)ygx),當(dāng)時(shí),求gx)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,AB=1,AD=2,動(dòng)點(diǎn)P在以點(diǎn)C為圓心且與BD相切的圓上.若= + ,則+的最大值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了了解高中生的藝術(shù)素養(yǎng),從學(xué)校隨機(jī)選取男,女同學(xué)各50人進(jìn)行研究,對(duì)這100名學(xué)生在音樂(lè)、美術(shù)、戲劇、舞蹈等多個(gè)藝術(shù)項(xiàng)目進(jìn)行多方位的素質(zhì)測(cè)評(píng),并把調(diào)查結(jié)果轉(zhuǎn)化為個(gè)人的素養(yǎng)指標(biāo),制成下圖,其中“*”表示男同學(xué),“+”表示女同學(xué).

,則認(rèn)定該同學(xué)為“初級(jí)水平”,若,則認(rèn)定該同學(xué)為“中級(jí)水平”,若,則認(rèn)定該同學(xué)為“高級(jí)水平”;若,則認(rèn)定該同學(xué)為“具備一定藝術(shù)發(fā)展?jié)撡|(zhì)”,否則為“不具備明顯藝術(shù)發(fā)展?jié)撡|(zhì)”.

(I)從50名女同學(xué)的中隨機(jī)選出一名,求該同學(xué)為“初級(jí)水平”的概率;

(Ⅱ)從男同學(xué)所有“不具備明顯藝術(shù)發(fā)展?jié)撡|(zhì)的中級(jí)或高級(jí)水平”中任選2名,求選出的2名均為“高級(jí)水平”的概率;

(Ⅲ)試比較這100名同學(xué)中,男、女生指標(biāo)的方差的大。ㄖ恍鑼(xiě)出結(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期是π,若其圖象向右平移 個(gè)單位后得到的函數(shù)為奇函數(shù),則函數(shù)y=f(x)的圖象(
A.關(guān)于點(diǎn)( ,0)對(duì)稱(chēng)
B.關(guān)于直線(xiàn)x= 對(duì)稱(chēng)
C.關(guān)于點(diǎn)( ,0)對(duì)稱(chēng)
D.關(guān)于直線(xiàn)x= 對(duì)稱(chēng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】商丘市大型購(gòu)物中心——萬(wàn)達(dá)廣場(chǎng)將于201876日全面開(kāi)業(yè),目前正處于試營(yíng)業(yè)階段,某按摩椅經(jīng)銷(xiāo)商為調(diào)查顧客體驗(yàn)按摩椅的時(shí)間,隨機(jī)調(diào)查了50名顧客,體驗(yàn)時(shí)間(單位:分鐘)落在各個(gè)小組的頻數(shù)分布如下表:

體驗(yàn)

時(shí)間

頻數(shù)

(1)求這名顧客體驗(yàn)時(shí)間的樣本平均數(shù),中位數(shù),眾數(shù);

(2)已知體驗(yàn)時(shí)間為的顧客中有2名男性,體驗(yàn)時(shí)間為的顧客中有3名男性,為進(jìn)一步了解顧客對(duì)按摩椅的評(píng)價(jià),現(xiàn)隨機(jī)從體驗(yàn)時(shí)間為的顧客中各抽一人進(jìn)行采訪(fǎng),求恰抽到一名男性的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校高三年級(jí)有學(xué)生500人,其中男生300人,女生200人,為了研究學(xué)生的數(shù)學(xué)成績(jī)是否與性別有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計(jì)了他們期中考試的數(shù)學(xué)分?jǐn)?shù),然后按性別分為男、女兩組,再將兩組學(xué)生的分?jǐn)?shù)分成5組:[100,110),[110,120),[120,130),[130,140),[140,150]分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.
(1)從樣本中分?jǐn)?shù)小于110分的學(xué)生中隨機(jī)抽取2人,求兩人恰好為一男一女的概率;
(2)若規(guī)定分?jǐn)?shù)不小于130分的學(xué)生為“數(shù)學(xué)尖子生”,請(qǐng)你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“數(shù)學(xué)尖子生與性別有關(guān)”?

P(K2≥k0

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

附:K2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖四邊形ABCD為菱形,GACBD交點(diǎn),,

(I)證明:平面平面;

(II)若, 三棱錐的體積為,求該三棱錐的側(cè)面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案