科目: 來源: 題型:
【題目】根據(jù)以往的經(jīng)驗,某工程施工期間的將數(shù)量X(單位:mm)對工期的影響如下表:
降水量X | X<300 | 300≤X<700 | 700≤X<900 | X≥900 |
工期延誤天數(shù)Y | 0 | 2 | 6 | 10 |
歷年氣象資料表明,該工程施工期間降水量X小于300,700,900的概率分別為0.3,0.7,0.9,求:
(1)工期延誤天數(shù)Y的均值與方差;
(2)在降水量X至少是300的條件下,工期延誤不超過6天的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,∠ACB=45°,BC=3,過動點A作AD⊥BC,垂足D在線段BC上且異于點B,連接AB,沿AD將△ABD折起,使∠BDC=90°(如圖2所示),
(1)當(dāng)BD的長為多少時,三棱錐A﹣BCD的體積最大;
(2)當(dāng)三棱錐A﹣BCD的體積最大時,設(shè)點E,M分別為棱BC,AC的中點,試在棱CD上確定一點N,使得EN⊥BM,并求EN與平面BMN所成角的大。
查看答案和解析>>
科目: 來源: 題型:
【題目】北京某附屬中學(xué)為了改善學(xué)生的住宿條件,決定在學(xué)校附近修建學(xué)生宿舍,學(xué)?倓(wù)辦公室用1000萬元從政府購得一塊廉價土地,該土地可以建造每層1000平方米的樓房,樓房的每平方米建筑費用與建筑高度有關(guān),樓房每升高一層,整層樓每平方米建筑費用提高0.02萬元,已知建筑第5層樓房時,每平方米建筑費用為0.8萬元.
(1)若學(xué)生宿舍建筑為層樓時,該樓房綜合費用為萬元,綜合費用是建筑費用與購地費用之和),寫出的表達(dá)式;
(2)為了使該樓房每平方米的平均綜合費用最低,學(xué)校應(yīng)把樓層建成幾層?此時平均綜合費用為每平方米多少萬元?
【答案】(1);(2)學(xué)校應(yīng)把樓層建成層,此時平均綜合費用為每平方米萬元
【解析】
由已知求出第層樓房每平方米建筑費用為萬元,得到第層樓房建筑費用,由樓房每升高一層,整層樓建筑費用提高萬元,然后利用等差數(shù)列前項和求建筑層樓時的綜合費用;
設(shè)樓房每平方米的平均綜合費用為,則,然后利用基本不等式求最值.
解:由建筑第5層樓房時,每平方米建筑費用為萬元,
且樓房每升高一層,整層樓每平方米建筑費用提高萬元,
可得建筑第1層樓房每平方米建筑費用為:萬元.
建筑第1層樓房建筑費用為:萬元.
樓房每升高一層,整層樓建筑費用提高:萬元.
建筑第x層樓時,該樓房綜合費用為:.
;
設(shè)該樓房每平方米的平均綜合費用為,
則:,
當(dāng)且僅當(dāng),即時,上式等號成立.
學(xué)校應(yīng)把樓層建成10層,此時平均綜合費用為每平方米萬元.
【點睛】
本題考查簡單的數(shù)學(xué)建模思想方法,訓(xùn)練了等差數(shù)列前n項和的求法,訓(xùn)練了利用基本不等式求最值,是中檔題.
【題型】解答題
【結(jié)束】
20
【題目】已知.
(1)求函數(shù)的最小正周期和對稱軸方程;
(2)若,求的值域.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知等差數(shù)列{an}前三項的和為﹣3,前三項的積為8.
(1)求等差數(shù)列{an}的通項公式;
(2)若a2 , a3 , a1成等比數(shù)列,求數(shù)列{|an|}的前n項和.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知向量 =(cosωx﹣sinωx,sinωx), =(﹣cosωx﹣sinωx,2 cosωx),設(shè)函數(shù)f(x)= +λ(x∈R)的圖象關(guān)于直線x=π對稱,其中ω,λ為常數(shù),且ω∈( ,1)
(1)求函數(shù)f(x)的最小正周期;
(2)若y=f(x)的圖象經(jīng)過點( ,0)求函數(shù)f(x)在區(qū)間[0, ]上的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】(選修4﹣4:坐標(biāo)系與參數(shù)方程):
在直角坐標(biāo)系xOy中,以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知射線θ= 與曲線 (t為參數(shù))相交于A,B來兩點,則線段AB的中點的直角坐標(biāo)為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓有以下性質(zhì):
①過圓上一點的圓的切線方程是.
②若不在坐標(biāo)軸上的點為圓外一點,過作圓的兩條切線,切點分別為,則垂直,即.
(1)類比上述有關(guān)結(jié)論,猜想過橢圓上一點的切線方程 (不要求證明);
(2)若過橢圓外一點(不在坐標(biāo)軸上)作兩直線,與橢圓相切于兩點,求證:為定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,雙曲線 =1(a,b>0)的兩頂點為A1 , A2 , 虛軸兩端點為B1 , B2 , 兩焦點為F1 , F2 . 若以A1A2為直徑的圓內(nèi)切于菱形F1B1F2B2 , 切點分別為A,B,C,D.則: (Ⅰ)雙曲線的離心率e=;
(Ⅱ)菱形F1B1F2B2的面積S1與矩形ABCD的面積S2的比值 = .
查看答案和解析>>
科目: 來源: 題型:
【題目】我國古代數(shù)學(xué)名著《九章算術(shù)》中“開立圓術(shù)”曰:置積尺數(shù),以十六乘之,九而一,所得開立方除之,即立圓徑,“開立圓術(shù)”相當(dāng)于給出了已知球的體積V,求其直徑d的一個近似公式d≈ .人們還用過一些類似的近似公式.根據(jù)π=3.14159…..判斷,下列近似公式中最精確的一個是( )
A.d≈
B.d≈
C.d≈
D.d≈
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,則_____.
【答案】
【解析】
分子分母同時除以,把目標(biāo)式轉(zhuǎn)為的表達(dá)式,代入可求.
,則
故答案為:.
【點睛】
本題考查三角函數(shù)的化簡求值,常用方法:(1)弦切互化法:主要利用公式, 形如等類型可進(jìn)行弦化切;(2)“1”的靈活代換和的關(guān)系進(jìn)行變形、轉(zhuǎn)化.
【題型】填空題
【結(jié)束】
15
【題目】如圖,正方體的棱長為1,為中點,連接,則異面直線和所成角的余弦值為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com