相關(guān)習(xí)題
 0  259989  259997  260003  260007  260013  260015  260019  260025  260027  260033  260039  260043  260045  260049  260055  260057  260063  260067  260069  260073  260075  260079  260081  260083  260084  260085  260087  260088  260089  260091  260093  260097  260099  260103  260105  260109  260115  260117  260123  260127  260129  260133  260139  260145  260147  260153  260157  260159  260165  260169  260175  260183  266669 

科目: 來(lái)源: 題型:

【題目】(本小題10分)選修4—4:坐標(biāo)系與參數(shù)方程

已知曲線(xiàn)C1的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C2的極坐標(biāo)方程為ρ=2sinθ。

)把C1的參數(shù)方程化為極坐標(biāo)方程;

)求C1C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,在四棱柱ABCD﹣A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD= ,且點(diǎn)M和N分別為B1C和D1D的中點(diǎn).
(I)求證:MN∥平面ABCD;
(II)求二面角D1﹣AC﹣B1的正弦值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù)f(x)滿(mǎn)足f(xy)=f(xf(y),且f(1)=.

(1)當(dāng)nN,求f(n)的表達(dá)式;

(2)設(shè)annf(n),nN,求證:a1a2+…+an<2.

【答案】(1)(2)見(jiàn)解析

【解析】

(1)利用f(x+y)=f(x)f(y)(x,yR)通過(guò)令x=n,y=1,說(shuō)明{f(n)}是以f(1)=為首項(xiàng),公比為的等比數(shù)列求出;(2)利用(1)求出an=nf(n)的表達(dá)式,利用錯(cuò)位相減法求出數(shù)列的前n項(xiàng)和,即可說(shuō)明不等式成立.

(1)解:f(n)=f[(n-1)+1]

f(n-1)·f(1)=f(n-1).

∴當(dāng)n≥2時(shí),.

f(1)=,

∴數(shù)列{f(n)}是首項(xiàng)為,公比為的等比數(shù)列,

f(n)=f(1)·()n1=()n.

(2)證明(1)可知,

ann·()nn·,

設(shè)Sna1a2+…+an,

Sn+2×+3×+…+(n-1)·n·

Sn+2×+…+(n-2)·+(n-1)·n·.

②得,

Sn+…+n·

=1-

Sn=2-<2.

a1a2+…+an<2.

【點(diǎn)睛】

本題考查數(shù)列與函數(shù)的關(guān)系,數(shù)列通項(xiàng)公式的求法和的求法,考查不等式的證明,裂項(xiàng)法與錯(cuò)位相減法的應(yīng)用,數(shù)列通項(xiàng)的求法中有常見(jiàn)的已知的關(guān)系,求表達(dá)式,一般是寫(xiě)出做差得通項(xiàng),但是這種方法需要檢驗(yàn)n=1時(shí)通項(xiàng)公式是否適用;數(shù)列求和常用法有:錯(cuò)位相減,裂項(xiàng)求和,分組求和等.

型】解答
結(jié)束】
22

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn.已知a1a (a≠3),an1Sn+3n,nN.

(1)設(shè)bnSn-3n,求數(shù)列{bn}的通項(xiàng)公式;

(2)an1an,nN,求a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】等差數(shù)列{an}的各項(xiàng)均為正數(shù),a1=3,前n項(xiàng)和為Sn,{bn}為等比數(shù)列,b1=1,且b2S2=64,b3S3=960.

(1)anbn

(2)

【答案】(1)an=2n+1,bn=8n1.(2)

【解析】

(1)設(shè){an}的公差為d,{bn}的公比為q,由題設(shè)條件建立方程組,解方程組得到dq的值,從而求出anbn;(2)由Sn=n(n+2),知,由此可求出的值.

(1)設(shè){an}的公差為d,{bn}的公比為q,則d為正數(shù),

an=3+(n-1)d,bnqn1,

依題意有,

解得 (舍去).

an=3+2(n-1)=2n+1,bn=8n1.

(2)Sn=3+5+…+(2n+1)=n(n+2).

所以+…++…+

(1-+…+)

(1+)

.

【點(diǎn)睛】

這個(gè)題目考查的是數(shù)列通項(xiàng)公式的求法及數(shù)列求和的常用方法;數(shù)列通項(xiàng)的求法中有常見(jiàn)的已知的關(guān)系,求表達(dá)式,一般是寫(xiě)出做差得通項(xiàng),但是這種方法需要檢驗(yàn)n=1時(shí)通項(xiàng)公式是否適用;數(shù)列求和常用法有:錯(cuò)位相減,裂項(xiàng)求和,分組求和等。

型】解答
結(jié)束】
21

【題目】已知函數(shù)f(x)滿(mǎn)足f(xy)=f(xf(y),且f(1)=.

(1)當(dāng)nN,求f(n)的表達(dá)式;

(2)設(shè)annf(n),nN,求證:a1a2+…+an<2.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,已知的等比中項(xiàng)為,且的等差中項(xiàng)為1,求數(shù)列{an}的通項(xiàng)公式。

【答案】.

【解析】

設(shè)等差數(shù)列{an}的首項(xiàng)為a1,公差為d,運(yùn)用等差中項(xiàng)和等比中項(xiàng)的定義,利用等差數(shù)列的求和公式,代入可求a1,d,解方程可求通項(xiàng)an

設(shè)等差數(shù)列{an}的首項(xiàng),公差為,則通項(xiàng)為,

項(xiàng)和為,依題意有,

其中,由此可得,

整理得, 解方程組得,

由此得;或.

經(jīng)檢驗(yàn)均合題意.

所以所求等差數(shù)列的通項(xiàng)公式為.

【點(diǎn)睛】

本題主要考查了等差數(shù)列的通項(xiàng)公式和性質(zhì)及等比數(shù)列中項(xiàng)的性質(zhì),數(shù)列通項(xiàng)的求法中有常見(jiàn)的已知的關(guān)系,求表達(dá)式,一般是寫(xiě)出做差得通項(xiàng),但是這種方法需要檢驗(yàn)n=1時(shí)通項(xiàng)公式是否適用。

型】解答
結(jié)束】
20

【題目】等差數(shù)列{an}的各項(xiàng)均為正數(shù),a1=3,前n項(xiàng)和為Sn,{bn}為等比數(shù)列,b1=1,且b2S2=64,b3S3=960.

(1)anbn;

(2)

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】設(shè)a≠b,解關(guān)于x的不等式a2xb2(1-x)≥[axb(1-x)]2

【答案】{x|0≤x≤1}.

【解析】

將原不等式化簡(jiǎn)為(ab)2(x2x) ≤0,由條件得到系數(shù)(ab)2>0,直接解出不等式x2x≤0即可.

解:將原不等式化為

(a2b2)x+b2≥(ab)2x2+2(a-b)bxb2,

移項(xiàng),整理后得 (ab)2(x2x) ≤0,…

ab (ab)2>0,

x2x≤0,

x(x-1) ≤0.

解此不等式,得解集 {x|0≤x≤1}.

【點(diǎn)睛】

本小題主要考查不等式基本知識(shí),不等式的解法;解題時(shí)要注意公式的靈活運(yùn)用.對(duì)于含參的二次不等式問(wèn)題,先判斷二次項(xiàng)系數(shù)是否含參,接著討論參數(shù)等于0,不等于0,再看式子能否因式分解,若能夠因式分解則進(jìn)行分解,再比較兩根大小,結(jié)合圖像得到不等式的解集.

型】解答
結(jié)束】
19

【題目】設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,已知的等比中項(xiàng)為,且的等差中項(xiàng)為1,求數(shù)列{an}的通項(xiàng)公式。

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】設(shè)是公比為正數(shù)的等比數(shù)列,,

(1)的通項(xiàng)公式;

(2)設(shè)是首項(xiàng)為1,公差為2的等差數(shù)列,求數(shù)列的前項(xiàng)和

【答案】(1)(2)

【解析】

(1)根據(jù)等比數(shù)列的通項(xiàng)公式得到:,解得二次方程可得到(舍去),進(jìn)而得到數(shù)列的通項(xiàng);(2)已知數(shù)列的類(lèi)型是等差數(shù)列與等比數(shù)列求和的問(wèn)題,根據(jù)等差等比數(shù)列求和公式得到結(jié)果即可.

:(1)設(shè)為等比數(shù)列的公比,則由,:

,解得:(舍去)

所以的通項(xiàng)公式為

(2) 由 等 差 數(shù) 列 的 通 項(xiàng) 公 式 得 到:

由 等 差 數(shù) 列求 和 公 式 和 等 比 數(shù) 列 前 n 項(xiàng) 和 公 式 得 到

【點(diǎn)睛】

這個(gè)題目考查的是數(shù)列通項(xiàng)公式的求法及數(shù)列求和的常用方法;數(shù)列通項(xiàng)的求法中有常見(jiàn)的已知的關(guān)系,求表達(dá)式,一般是寫(xiě)出做差得通項(xiàng),但是這種方法需要檢驗(yàn)n=1時(shí)通項(xiàng)公式是否適用;數(shù)列求和常用法有:錯(cuò)位相減,裂項(xiàng)求和,分組求和等。

型】解答
結(jié)束】
18

【題目】設(shè)a≠b,解關(guān)于x的不等式a2xb2(1-x)≥[axb(1-x)]2

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知x=3是函數(shù)f(x)=aln(1+x)+x2﹣10x的一個(gè)極值點(diǎn).
(Ⅰ)求a;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)若直線(xiàn)y=b與函數(shù)y=f(x)的圖象有3個(gè)交點(diǎn),求b的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示.

(1)求函數(shù)f(x)的解析式,并寫(xiě)出f(x)的單調(diào)減區(qū)間;
(2)△ABC的內(nèi)角分別是A,B,C,若f(A)=1,cosB= ,求sinC的值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sin2x+2 sin(x+ )cos(x﹣ )﹣cos2x﹣
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)求函數(shù)f(x)在[﹣ π]上的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案