相關(guān)習(xí)題
 0  260111  260119  260125  260129  260135  260137  260141  260147  260149  260155  260161  260165  260167  260171  260177  260179  260185  260189  260191  260195  260197  260201  260203  260205  260206  260207  260209  260210  260211  260213  260215  260219  260221  260225  260227  260231  260237  260239  260245  260249  260251  260255  260261  260267  260269  260275  260279  260281  260287  260291  260297  260305  266669 

科目: 來源: 題型:

【題目】下列命題中:

①線性回歸方程 至少經(jīng)過點(x1,y1),(x2,y2),…,(xn ,yn)中的一個點;

②若變量之間的相關(guān)系數(shù)為 ,則變量之間的負(fù)相關(guān)很強;

③在回歸分析中,相關(guān)指數(shù) 為0.80的模型比相關(guān)指數(shù)為0.98的模型擬合的效果要好;

④在回歸直線中,變量時,變量的值一定是-7。

其中假命題的個數(shù)是 ( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目: 來源: 題型:

【題目】已知數(shù)列{an}與{bn}滿足an=2bn+3(n∈N*),若{bn}的前n項和為Sn= (3n﹣1)且λan>bn+36(n﹣3)+3λ對一切n∈N*恒成立,則實數(shù)λ的取值范圍是

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣mlnx在[2,+∞)上單調(diào)遞增,則實數(shù)m的取值范圍為

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時,f(﹣x)+f(x+3)=0;當(dāng)x∈(0,3)時,f(x)= ,其中e是自然對數(shù)的底數(shù),且e≈2.72,則方程6f(x)﹣x=0在[﹣9,9]上的解的個數(shù)為(
A.4
B.5
C.6
D.7

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+)(A>0,ω>0,||< ),其導(dǎo)函數(shù)f'(x)的部分圖象如圖所示,則函數(shù)f(x)的解析式為(

A.
B.
C.
D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=x2aln x(aR).

(1)f(x)x=2處取得極值,求a的值;

(2)f(x)的單調(diào)區(qū)間;

(3)求證:當(dāng)x>1時, x2+ln x<x3.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)f(x)=alnx+ + x+1,其中a∈R,曲線y=f(x)在點(1,f(1))處的切線垂直于y軸.
(1)求a的值;
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目: 來源: 題型:

【題目】某個體戶計劃經(jīng)銷A,B兩種商品,據(jù)調(diào)查統(tǒng)計,當(dāng)投資額為x(x≥0)萬元時,在經(jīng)銷A,B商品中所獲得的收益分別為f(x)萬元與g(x)萬元,其中f(x)=a(x-1)+2,g(x)=6ln(xb)(a>0,b>0).已知投資額為零時收益為零.

(1)a,b的值;

(2)如果該個體戶準(zhǔn)備投入5萬元經(jīng)銷這兩種商品,請你幫他制定一個資金投入方案,使他能獲得最大利潤.

查看答案和解析>>

科目: 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項和為Sn滿足2Sn=an+1﹣2n+1+1,n∈N* , 且a1 , a2+5,a3成等差數(shù)列.
(1)求a1的值;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f(x)=aln(x+1)+x2ax+1(a>1).

(1)求函數(shù)yf(x)在點(0,f(0))處的切線方程;

(2)當(dāng)a>1時,求函數(shù)yf(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

同步練習(xí)冊答案