相關(guān)習(xí)題
 0  260153  260161  260167  260171  260177  260179  260183  260189  260191  260197  260203  260207  260209  260213  260219  260221  260227  260231  260233  260237  260239  260243  260245  260247  260248  260249  260251  260252  260253  260255  260257  260261  260263  260267  260269  260273  260279  260281  260287  260291  260293  260297  260303  260309  260311  260317  260321  260323  260329  260333  260339  260347  266669 

科目: 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓的離心率為,過橢圓右焦點(diǎn)作兩條互相垂直的弦.當(dāng)直線斜率為0時(shí),

1)求橢圓的方程;

2)求的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ae2x+(a﹣2)ex﹣x.(12分)
(1)討論f(x)的單調(diào)性;
(2)若f(x)有兩個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】交通指數(shù)是交通擁堵指數(shù)的簡(jiǎn)稱,是綜合反映道路網(wǎng)暢通或擁堵的概念,記交通指數(shù)為T.其

范圍為[0,10],分別有五個(gè)級(jí)別:T[0,2)暢通;T[2,4)基本暢通; T[4,6)輕度擁堵; T[6,8)中度擁堵;T[8,10]嚴(yán)重?fù)矶?/span>,晚高峰時(shí)段(T2),從某市交通指揮中心選取了市區(qū)20個(gè)交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的部分直方圖如圖所示.

(1)請(qǐng)補(bǔ)全直方圖,并求出輕度擁堵、中度擁堵、嚴(yán)重?fù)矶侣范胃饔卸嗌賯(gè)?

(2)用分層抽樣的方法從交通指數(shù)在[4,6),[6,8),[8,l0]的路段中共抽取6個(gè)路段,求依次抽取的三個(gè)級(jí)別路段的個(gè)數(shù);

(3)(2)中抽出的6個(gè)路段中任取2個(gè),求至少一個(gè)路段為輕度擁堵的概率.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】有下列命題:

①“的充要條件;

②“一元二次不等式的解集為R”的充要條件;

③“直線平行于直線的充分不必要條件;

④“的必要不充分條件.

其中真命題的序號(hào)為____________.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,四面體中, 是正三角形, 是直角三角形, ,.

(1)證明:平面平面;

(2)的平面交于點(diǎn),若平面把四面體分成體積相等的兩部分,求二面角的大小。

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知直線.

(1)若直線不經(jīng)過第四象限,求的取值范圍;

(2)若直線軸負(fù)半軸于,交軸正半軸于,求的面積的最小值并求此時(shí)直線的方程;

(3)已知點(diǎn),若點(diǎn)到直線的距離為,求的最大值并求此時(shí)直線的方程.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】[選修4-4 , 坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (θ為參數(shù)),直線l的參數(shù)方程為 (t為參數(shù)).(10分)
(1)若a=﹣1,求C與l的交點(diǎn)坐標(biāo);
(2)若C上的點(diǎn)到l距離的最大值為 ,求a.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】在四棱錐S-ABCD中,底面ABCD是邊長(zhǎng)為1的正方形,SD底面ABCD,SD=2,其中分別是的中點(diǎn),上的一個(gè)動(dòng)點(diǎn).

(1)當(dāng)點(diǎn)落在什么位置時(shí),∥平面,證明你的結(jié)論;

(2)求三棱錐的體積.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(10分)
(1)當(dāng)a=1時(shí),求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,將菱形ABCD沿對(duì)角線BD折起,使得C點(diǎn)至C′,E點(diǎn)在線段AC′上,若二面角A﹣BD﹣E與二面角E﹣BD﹣C′的大小分別為15°和30°,則__

查看答案和解析>>

同步練習(xí)冊(cè)答案