科目: 來源: 題型:
【題目】已知橢圓過點,且離心率
(1)求橢圓的標(biāo)準方程
(2)是否存在過點的直線交橢圓與不同的兩點,且滿足 (其中為坐標(biāo)原點)。若存在,求出直線的方程;若不存在,請說明理由。
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|. (Ⅰ)若不等式f(x)≤2的解集為[0,4],求實數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若x0∈R,使得f(x0)+f(x0+5)﹣m2<4m,求實數(shù)m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為3ρ2cos2θ+4ρ2sin2θ=12. (Ⅰ)寫出直線l的極坐標(biāo)方程與曲線C的直角坐標(biāo)方程;
(Ⅱ)已知與直線l平行的直線l'過點M(1,0),且與曲線C交于A,B兩點,試求|AB|.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+x﹣lnx,(a>0). (Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)f(x)極值點為x0 , 若存在x1 , x2∈(0,+∞),且x1≠x2 , 使f(x1)=f(x2),求證:x1+x2>2x0 .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點M(﹣3,0),點P在y軸上,點Q在x軸的正半軸上,點N在直線PQ上,且滿足 . (Ⅰ)當(dāng)點P在y軸上移動時,求點N的軌跡C的方程;
(Ⅱ)過點 做直線l與軌跡C交于A,B兩點,若在x軸上存在一點E(x0 , 0),使得△AEB是以點E為直角頂點的直角三角形,求直線l的斜率k的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在五面體ABCDEF中,四邊形ABCD是邊長為2的正方形,EF∥平面ABCD,EF=1,F(xiàn)B=FC,∠BFC=90°,AE= .
(1)求證:AB⊥平面BCF;
(2)求直線AE與平面BDE所成角的正切值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某汽車美容公司為吸引顧客,推出優(yōu)惠活動:對首次消費的顧客,按200元/次收費,并注冊成為會員,對會員逐次消費給予相應(yīng)優(yōu)惠,標(biāo)準如表:
消費次第 | 第1次 | 第2次 | 第3次 | 第4次 | ≥5次 |
收費比例 | 1 | 0.95 | 0.90 | 0.85 | 0.80 |
該公司從注冊的會員中,隨機抽取了100位進行統(tǒng)計,得到統(tǒng)計數(shù)據(jù)如表:
消費次第 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
頻數(shù) | 60 | 20 | 10 | 5 | 5 |
假設(shè)汽車美容一次,公司成本為150元,根據(jù)所給數(shù)據(jù),解答下列問題:
(1)估計該公司一位會員至少消費兩次的概率;
(2)某會員僅消費兩次,求這兩次消費中,公司獲得的平均利潤;
(3)設(shè)該公司從至少消費兩次,求這的顧客消費次數(shù)用分層抽樣方法抽出8人,再從這8人中抽出2人發(fā)放紀念品,求抽出2人中恰有1人消費兩次的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】等差數(shù)列{an}中,其前n項和為Sn , 且 ,等比數(shù)列{bn}中,其前n項和為Tn , 且 ,(n∈N*)
(1)求an , bn;
(2)求{anbn}的前n項和Mn .
查看答案和解析>>
科目: 來源: 題型:
【題目】某種產(chǎn)品的廣告費用支出與銷售額之間有如下的對應(yīng)數(shù)據(jù)(單位:萬元):
(1)求關(guān)于的線性回歸直線方程;
(2)據(jù)此估計廣告費用為10萬元時銷售收入的值.
(附:對于線性回歸方程,其中)
參考公式:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com