科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=2,cosB= ,點D在線段BC上.
(1)若∠ADC= π,求AD的長;
(2)若BD=2DC,△ABC的面積為 ,求 的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】公元263年左右,我國數(shù)學家劉徽發(fā)現(xiàn)當圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術”.利用“割圓術”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術”思想設計的一個程序框圖,則輸出n的值為 . (參考數(shù)據(jù):sin15°=0.2588,sin7.5°=0.1305)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤ ),其圖象與直線y=﹣1相鄰兩個交點的距離為π,若f(x)>1對x∈(﹣ , )恒成立,則φ的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=|x+m|+|2x﹣1|(m∈R) (I)當m=﹣1時,求不等式f(x)≤2的解集;
(II)設關于x的不等式f(x)≤|2x+1|的解集為A,且[ ,2]A,求實數(shù)m的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標系xOy中,曲線C的參數(shù)方程為 (α為參數(shù)).以點O為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ﹣ )=2 (Ⅰ)將直線l化為直角坐標方程;
(Ⅱ)求曲線C上的一點Q 到直線l 的距離的最大值及此時點Q的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=aex(a≠0),g(x)=x2(Ⅰ)若曲線c1:y=f(x)與曲線c2:y=g(x)存在公切線,求a最大值.
(Ⅱ)當a=1時,F(xiàn)(x)=f(x)﹣bg(x)﹣cx﹣1,且F(2)=0,若F(x)在(0,2)內(nèi)有零點,求實數(shù)b的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】設橢圓C: =1(a>b>0),橢圓C短軸的一個端點與長軸的一個端點的連線與圓O:x2+y2= 相切,且拋物線y2=﹣4 x的準線恰好過橢圓C的一個焦點. (Ⅰ)求橢圓C的方程;
(Ⅱ)過圓O上任意一點P作圓的切線l與橢圓C交于A,B兩點,連接PO并延長交圓O于點Q,求△ABQ面積的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著經(jīng)濟模式的改變,微商和電商已成為當今城鄉(xiāng)一種新型的購銷平臺.已知經(jīng)銷某種商品的電商在任何一個銷售季度內(nèi),每售出1噸該商品可獲利潤0.5萬元,未售出的商品,每1噸虧損0.3萬元.根據(jù)往年的銷售經(jīng)驗,得到一個銷售季度內(nèi)市場需求量的頻率分布直方圖如右圖所示.已知電商為下一個銷售季度籌備了130噸該商品.現(xiàn)以x(單位:噸,100≤x≤150)表示下一個銷售季度的市場需求量,T(單位:萬元)表示該電商下一個銷售季度內(nèi)經(jīng)銷該商品獲得的利潤. (Ⅰ)視x分布在各區(qū)間內(nèi)的頻率為相應的概率,求P(x≥120)
(Ⅱ)將T表示為x的函數(shù),求出該函數(shù)表達式;
(Ⅲ)在頻率分布直方圖的市場需求量分組中,以各組的區(qū)間中點值(組中值)代表該組的各個值,并以市場需求量落入該區(qū)間的頻率作為市場需求量取該組中值的概率(例如x∈[100,110),則取x=105,且x=105的概率等于市場需求量落入100,110)的頻率),求T的分布列及數(shù)學期望E(T).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD為菱形,∠ABC=60°,E是BC中點,M是PD上的中點,F(xiàn)是PC上的動點. (Ⅰ)求證:平面AEF⊥平面PAD
(Ⅱ)直線EM與平面PAD所成角的正切值為 ,當F是PC中點時,求二面角C﹣AF﹣E的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com