科目: 來源: 題型:
【題目】過圓上的點(diǎn)作圓的切線,過點(diǎn)作切線的垂線,若直線過拋物線的焦點(diǎn).
(1)求直線與拋物線的方程;
(2)若直線與拋物線交于點(diǎn),點(diǎn)在拋物線的準(zhǔn)線上,且,求的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四棱錐的底面是直角梯形, , ,
,點(diǎn)在線段上,且, , 平面.
(1)求證:平面平面;
(2)當(dāng)四棱錐的體積最大時(shí),求四棱錐的表面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】某超市在2017年五一正式開業(yè),開業(yè)期間舉行開業(yè)大酬賓活動,規(guī)定:一次購買總額在區(qū)間內(nèi)者可以參與一次抽獎(jiǎng),根據(jù)統(tǒng)計(jì)發(fā)現(xiàn)參與一次抽獎(jiǎng)的顧客每次購買金額分布情況如下:
(1)求參與一次抽獎(jiǎng)的顧客購買金額的平均數(shù)與中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表,結(jié)果保留到整數(shù));
(2)若根據(jù)超市的經(jīng)營規(guī)律,購買金額與平均利潤有以下四組數(shù)據(jù):
試根據(jù)所給數(shù)據(jù),建立關(guān)于的線性回歸方程,并根據(jù)(1)中計(jì)算的結(jié)果估計(jì)超市對每位顧客所得的利潤.
參考公式: , .
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí), 恒成立,求的范圍;
(2)若在處的切線為,求的值.并證明當(dāng))時(shí), .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點(diǎn),圓,點(diǎn)是圓上一動點(diǎn), 的垂直平分線與線段交于點(diǎn).
(1)求點(diǎn)的軌跡方程;
(2)設(shè)點(diǎn)的軌跡為曲線,過點(diǎn)且斜率不為0的直線與交于兩點(diǎn),點(diǎn)關(guān)于軸的對稱點(diǎn)為,證明直線過定點(diǎn),并求面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)如下表:
(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;
(2)若近幾年該農(nóng)產(chǎn)品每千克的價(jià)格 (單位:元)與年產(chǎn)量滿足的函數(shù)關(guān)系式為,且每年該農(nóng)產(chǎn)品都能售完.
①根據(jù)(1)中所建立的回歸方程預(yù)測該地區(qū)年該農(nóng)產(chǎn)品的產(chǎn)量;
②當(dāng)為何值時(shí),銷售額最大?
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為: , .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的離心率,且經(jīng)過點(diǎn).
(1)求橢圓方程;
(2)過點(diǎn)的直線與橢圓交于兩個(gè)不同的點(diǎn),求線段的垂直平分線在軸截距的范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知雞的產(chǎn)蛋量與雞舍的溫度有關(guān),為了確定下一個(gè)時(shí)段雞舍的控制溫度,某企業(yè)需要了解雞舍的溫度 (單位:),對某種雞的時(shí)段產(chǎn)蛋量(單位:) 和時(shí)段投入成本(單位:萬元)的影響,為此,該企業(yè)收集了7個(gè)雞舍的時(shí)段控制溫度和產(chǎn)蛋量的數(shù)據(jù),對數(shù)據(jù)初步處理后得到了如圖所示的散點(diǎn)圖和表中的統(tǒng)計(jì)量的值.
其中.
(1)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)更適宜作為該種雞的時(shí)段產(chǎn)蛋量關(guān)于雞舍時(shí)段控制溫度的回歸方程類型?(給判斷即可,不必說明理由)
(2)若用作為回歸方程模型,根據(jù)表中數(shù)據(jù),建立關(guān)于的回歸方程;
(3)已知時(shí)段投入成本與的關(guān)系為,當(dāng)時(shí)段控制溫度為時(shí),雞的時(shí)段產(chǎn)蛋量及時(shí)段投入成本的預(yù)報(bào)值分別是多少?
附:①對于一組具有線性相關(guān)關(guān)系的數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程為,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為的正半軸,建立平面直角坐標(biāo)系.
(1)若曲線為參數(shù))與曲線相交于兩點(diǎn),求;
(2)若是曲線上的動點(diǎn),且點(diǎn)的直角坐標(biāo)為,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com