相關(guān)習(xí)題
 0  261024  261032  261038  261042  261048  261050  261054  261060  261062  261068  261074  261078  261080  261084  261090  261092  261098  261102  261104  261108  261110  261114  261116  261118  261119  261120  261122  261123  261124  261126  261128  261132  261134  261138  261140  261144  261150  261152  261158  261162  261164  261168  261174  261180  261182  261188  261192  261194  261200  261204  261210  261218  266669 

科目: 來源: 題型:

【題目】已知拋物線上的兩個動點 的橫坐標(biāo),線段的中點坐標(biāo)為,直線與線段的垂直平分線相交于點.

1)求點的坐標(biāo);

(2)求的面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在等腰梯形中, 上底,下底為下底的中點,現(xiàn)將該梯形中的三角形沿線段折起,形成四棱錐.

(1)在四棱錐中,求證:

(2)若平面與平面所成二面角的平面角為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,飛鏢的標(biāo)靶呈圓盤形,圓盤被10等分,按如圖所示染色為Ⅰ、Ⅱ、Ⅲ三部分,某人依次將若干支飛鏢投向標(biāo)靶,如果每次投射都是相互獨立的.

(1)如果他投向標(biāo)靶的飛鏢恰有2支且都擊中標(biāo)靶,同時每支飛鏢擊中標(biāo)靶的任意位置都是等可能的,求“第Ⅰ部分被擊中2次或第Ⅱ部分被擊中2次”的概率;

(2)如果他投向標(biāo)靶的飛鏢恰有4支,且他投射1支飛鏢,擊中標(biāo)靶的概率為,設(shè)表示標(biāo)靶被擊中的次數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知四棱錐 中, .

(1)證明:頂點在底面的射影在的平分線上;

(2)求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】有甲乙兩家公司都愿意聘用某求職者,這兩家公式的具體聘用信息如下:

(1)根據(jù)以上信息,如果你是該求職者,你會選擇哪一家公司?說明理由;

(2)某課外實習(xí)作業(yè)小組調(diào)查了1000名職場人士,就選擇這兩家公司的意愿作了統(tǒng)計,得到如下數(shù)據(jù)分布:

若分析選擇意愿與年齡這兩個分類變量,計算得到的的觀測值為,測得出“選擇意愿與年齡有關(guān)系”的結(jié)論犯錯誤的概率的上限是多少?并用統(tǒng)計學(xué)知識分析,選擇意愿與年齡變量和性別變量哪一個關(guān)聯(lián)性更大?

附:

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),(其中

(1)若,討論函數(shù)的單調(diào)性;

(2)若,求證:函數(shù)有唯一的零點.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的右頂點與拋物線的焦點重合,橢圓的離心率為,過橢圓的右焦點且垂直于軸的直線截拋物線所得的弦長為.

(1)求橢圓和拋物線的方程;

(2)過點的直線交于兩點,點關(guān)于軸的對稱點為,證明:直線恒過一定點.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,已知四棱錐 中,

.

(1)證明:頂點在底面的射影為邊的中點;

(2)點上,且,求三棱錐的體積.

查看答案和解析>>

科目: 來源: 題型:

【題目】某課外實習(xí)作業(yè)小組調(diào)查了1000名職場人士,就入職兩家公司的意愿做了統(tǒng)計,得到如下數(shù)據(jù)分布:

(1)請分別計算40歲以上(含40歲)與40歲以下全體中選擇甲公司的頻率(保留兩位小數(shù)),根據(jù)計算結(jié)果,你能初步得出什么結(jié)論?

(2)若分析選擇意愿與年齡這兩個分類變量,計算得到的的觀測值為,測得出“選擇意愿與年齡有關(guān)系”的結(jié)論犯錯誤的概率的上限是多少?并用統(tǒng)計學(xué)知識分析,選擇意愿與年齡變量和性別變量哪一個關(guān)聯(lián)性更大?

附:

查看答案和解析>>

科目: 來源: 題型:

【題目】已知集合,其中 . 表示 中所有不同值的個數(shù).

(Ⅰ)若集合;

(Ⅱ)若集合,求證: 的值兩兩不同,并求;

(Ⅲ)求的最小值.(用含的代數(shù)式表示

查看答案和解析>>

同步練習(xí)冊答案